Skip to main content
Log in

Hydromechanical reactivation of natural discontinuities: mesoscale experimental observations and DEM modeling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Fracture interaction mechanisms and reactivation of natural discontinuities under fluid pressurization conditions can represent critical issues in risk assessment of caprock integrity. A field injection test, carried out in a damage fault zone at the decameter scale, i.e., mesoscale, has been studied using a distinct element model. Given the complex structural nature of the damage fault zone hydraulically loaded, the contribution of fracture sets on the bulk permeability has been investigated. It has been shown that their orientation for a given in situ stress field plays a major role. Based on these results, a simpler model with a fluid-driven fracture intersecting a second fracture has been set up to perform a sensitivity analysis. It is in presence of a minimum differential stress value with a minimum angle with the maximum principal stress that the second fracture could be both, hydraulically and mechanically reactivated. Results also showed that in the vicinity of the fluid-driven fracture, a natural fracture will offer contrasted hydromechanical responses on each side of the intersection depending on the stress conditions and its orientation with respect to the stress field. In this case, we show that a hydromechanical decoupling can occur along the same plane. These results provide insights into fracture-controlled permeability of fault zones depending on the properties of the fractures and their hydromechanical interactions for a given in situ stress field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amadei B, Savage WZ, Swolfs HS (1987) Gravitational stresses in anisotropic rock masses. Int J Rock Mech Min Sci Geomech Abstr 24(1):5–14

    Article  Google Scholar 

  2. Auradou H, Drazer G, Boschan A, Hulin JP, Koplik J (2006) Flow channeling in a single fracture induced by shear displacement. Geothermics 35(5–6):576–588

    Article  Google Scholar 

  3. Balsamo F, Storti F, Salvini F, Silva AT, Lima CC (2010) Structural and petrophysical evolution of extensional fault zones in low-porosity, poorly lithified sandstones of the Barreiras Formation, NE Brazil. J Struct Geol 32(11):1806–1826

    Article  Google Scholar 

  4. Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23(8):683–686

    Article  Google Scholar 

  5. Barton CA, Hickman S, Morin RH, Zoback MD, Finkbeiner T, Sass J, Benoit D (1997) Fracture permeability and its relationship to in situ stress in the Dixie Valley, Nevada, geothermal reservoir

  6. Behnia M, Goshtasbi K, Marji MF, Golshani A (2015) Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media. Acta Geotech 10(4):533–546

    Article  Google Scholar 

  7. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884

    Article  Google Scholar 

  8. Blanton TL (1986, January) Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs. In: SPE unconventional gas technology symposium. Society of Petroleum Engineers

  9. Boisson JY, Bertrand L, Heitz JF, Golvan Y (2001) In situ and laboratory investigations of fluid flow through an argillaceous formation at different scales of space and time, Tournemire tunnel, southern France. Hydrogeol J 9(1):108–123

    Article  Google Scholar 

  10. Bossart P (2011) Characteristics of the Opalinus clay at Mont Terri

  11. Cappa F (2011) Influence of hydromechanical heterogeneities of fault zones on earthquake ruptures. Geophys J Int 185:1049–1058

    Article  Google Scholar 

  12. Cappa F, Guglielmi Y, Rutqvist J, Tsang CF, Thoraval A (2006) Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. Int J Rock Mech Min Sci 43(7):1062–1082

    Article  Google Scholar 

  13. Cornet FH (2000) Détermination du champ de contrainte au voisinage du laboratoire souterrain de Tournemire. Rapport du Laboratoire de Mécanique des Roches, Département de Sismologie, Institut de Physique du Globe de Paris, Rapport N98N33/0073

  14. Cornet FH (2016) Seismic and aseismic motions generated by fluid injections. Geomech Energy Environ 5:42–54

    Article  Google Scholar 

  15. Cox SF (1995) Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J Geophys Res Solid Earth 100(B7):12841–12859

    Article  Google Scholar 

  16. Cox SF (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10(1–2):217–233

    Google Scholar 

  17. Cuss RJ, Milodowski A, Harrington JF (2011) Fracture transmissivity as a function of normal and shear stress: first results in Opalinus Clay. Phys Chem Earth Parts A/B/C 36(17–18):1960–1971

    Article  Google Scholar 

  18. Damjanac B, Cundall P (2016) Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Comput Geotech 71:283–294

    Article  Google Scholar 

  19. De Barros L et al (2016) Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation. J Geophys Res Solid Earth 121:4506–4522. https://doi.org/10.1002/2015JB012633

    Article  Google Scholar 

  20. Dick P, Wittebroodt C, Lefevre M, Courbet C, Matray JM (2013) Estimating hydraulic conductivities in a fractured shale formation from pressure pulse testing and 3D modeling, AGU, Fall Meeting 2013, abstract MR11A-2202

  21. Dreuzy JR, Méheust Y, Pichot G (2012) Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN). J Geophys Res Solid Earth. https://doi.org/10.1029/2012JB009461

    Article  Google Scholar 

  22. Duboeuf L, De Barros L, Cappa F, Guglielmi Y, Deschamps A, Seguy S (2017) Aseismic motions drive a sparse seismicity during fluid injections into a fractured zone in a carbonate reservoir. J Geophys Res Solid Earth 122(10):8285–8304

    Article  Google Scholar 

  23. Eshiet KII, Sheng Y (2017) The role of rock joint frictional strength in the containment of fracture propagation. Acta Geotech 12(4):897–920

    Article  Google Scholar 

  24. Faleiros AM, da Cruz Campanha GA, Faleiros FM, da Silveira Bello RM (2014) Fluid regimes, fault-valve behavior and formation of gold-quartz veins—the Morro do Ouro mine, Ribeira Belt, Brazil. Ore Geol Rev 56:442–456

    Article  Google Scholar 

  25. Fournier RO (1996) Compressive and tensile failure at high fluid pressure where preexisting fractures have cohesive strength, with application to the San Andreas Fault. J Geophys Res Solid Earth 101(B11):25499–25509

    Article  Google Scholar 

  26. Fu W, Ames BC, Bunger AP, Savitski AA (2016) Impact of partially cemented and non-persistent natural fractures on hydraulic fracture propagation. Rock Mech Rock Eng 49(11):4519–4526

    Article  Google Scholar 

  27. Gentier S, Lamontagne E, Archambault G, Riss J (1997) Anisotropy of flow in a fracture undergoing shear and its relationship to the direction of shearing and injection pressure. Int J Rock Mech Min Sci 34(3–4):94-e1

    Google Scholar 

  28. Guglielmi Y, Cappa F, Lançon H, Janowczyk JB, Rutqvist J, Tsang CF, Wang JSY (2013) ISRM suggested method for step-rate injection method for fracture in situ properties (SIMFIP): using a 3-components borehole deformation sensor. In: The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, Cham, pp 179–186

  29. Guglielmi Y, Cappa F, Avouac JP, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection–induced aseismic slip. Science 348(6240):1224–1226

    Article  Google Scholar 

  30. Guglielmi Y, Elsworth D, Cappa F, Henry P, Gout C, Dick P, Durand J (2015) In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales. J Geophys Res Solid Earth 120(11):7729–7748

    Article  Google Scholar 

  31. Gutierrez M, Øino LE, Nygaard R (2000) Stress-dependent permeability of a de-mineralised fracture in shale. Mar Pet Geol 17(8):895–907

    Article  Google Scholar 

  32. Itasca CG (2013) 3DEC-User manual. Itasca ConsultingGroup, Minneapolis

    Google Scholar 

  33. Jeanne P, Rinaldi AP, Rutqvist J, Dobson PF(2015, January) Seismic and aseismic deformations occurring during EGS stimulation at The Geysers: IMPACT on reservoir permeability. In: Proceedings, fourtieth workshop on geothermal reservoir engineering

  34. Jeffrey RG, Zhang X, Thiercelin MJ (2009, January) Hydraulic fracture offsetting in naturally fractures reservoirs: quantifying a long-recognized process. In: SPE hydraulic fracturing technology conference. Society of Petroleum Engineers

  35. Khazaei C, Hazzard J, Chalaturnyk R (2016) Discrete element modeling of stick-slip instability and induced microseismicity. Pure Appl Geophys 173(3):775–794

    Article  Google Scholar 

  36. Khazaei C, Hazzard J, Chalaturnyk R (2016) A discrete element model to link the microseismic energies recorded in caprock to geomechanics. Acta Geotech 11(6):1351–1367

    Article  Google Scholar 

  37. Liu Y, Xiu N, Ding Y, Wang X, Lu Y, Dou J, Yan Y, Liang T (2015) Analysis of multi-factor coupling effect on hydraulic fracture network in shale reservoirs. Nat Gas Ind B 2(2):162–166

    Article  Google Scholar 

  38. Matray JM, Savoye S, Cabrera J (2007) Desaturation and structure relationships around drifts excavated in the well-compacted Tournemire’s argillite (Aveyron, France). Eng Geol 90(1–2):1–16

    Article  Google Scholar 

  39. Matsuki K, Kimura Y, Sakaguchi K, Kizaki A, Giwelli AA (2010) Effect of shear displacement on the hydraulic conductivity of a fracture. Int J Rock Mech Min Sci 47(3):436–449

    Article  Google Scholar 

  40. Maxwell SC (2011) What does microseismic tell us about hydraulic fracture deformation. CSEG Rec 36(8):31–45

    Google Scholar 

  41. Min KB, Rutqvist J, Tsang CF, Jing L (2004) Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci 41(7):1191–1210

    Article  Google Scholar 

  42. Miocic JM, Gilfillan SM, Roberts JJ, Edlmann K, McDermott CI, Haszeldine RS (2016) Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection. Int J Greenh Gas Control 51:118–125

    Article  Google Scholar 

  43. Nagel NB, Sanchez-Nagel MA, Zhang F, Garcia X, Lee B (2013) Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock Mech Rock Eng 46(3):581–609

    Article  Google Scholar 

  44. Newell P, Martinez MJ, Eichhubl P (2017) Impact of layer thickness and well orientation on caprock integrity for geologic carbon storage. J Petrol Sci Eng 155:100–108

    Article  Google Scholar 

  45. Rinaldi AP, Rutqvist J, Cappa F (2014) Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. Int J Greenh Gas Control 20:117–131

    Article  Google Scholar 

  46. Rivet D, De Barros L, Guglielmi Y, Cappa F, Castilla R, Henry P (2016) Seismic velocity changes associated with aseismic deformations of a fault stimulated by fluid injection. Geophys Res Lett 43(18):9563–9572

    Article  Google Scholar 

  47. Rutledge JT, Phillips WS (2003) Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics 68(2):441–452

    Article  Google Scholar 

  48. Screaton EJ, Carson B, Lennon GP (1995) Hydrogeologic properties of a thrust fault within the Oregon accretionary prism. J Geophys Res Solid Earth 100(B10):20025–20035

    Article  Google Scholar 

  49. Sibson RH (1989) Earthquake faulting as a structural process. J Struct Geol 11(1–2):1–14

    Article  Google Scholar 

  50. Sibson RH (1996) Structural permeability of fluid-driven fault-fracture meshes. J Struct Geol 18(8):1031–1042

    Article  Google Scholar 

  51. Sibson RH, Robert F, Poulsen KH (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16(6):551–555

    Article  Google Scholar 

  52. Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28(5):399–402

    Article  Google Scholar 

  53. Tremosa J, Arcos D, Matray JM, Bensenouci F, Gaucher EC, Tournassat C, Hadi J (2012) Geochemical characterization and modelling of the Toarcian/Domerian porewater at the Tournemire underground research laboratory. Appl Geochem 27(7):1417–1431

    Article  Google Scholar 

  54. Van Der Baan M, Eaton D, Dusseault M (2013, May) Microseismic monitoring developments in hydraulic fracture stimulation. In: ISRM international conference for effective and sustainable hydraulic fracturing. international society for rock mechanics

  55. Warpinski NR, Teufel LW (1987) Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074). J Petrol Technol 39(02):209–220

    Article  Google Scholar 

  56. Warpinski NR, Du J, Zimmer U (2012) Measurements of hydraulic-fracture-induced seismicity in gas shales. SPE Prod Oper 27(03):240–252

    Google Scholar 

  57. Weertman J (1980) Unstable slippage across a fault that separates elastic media of different elastic constants. J Geophys Res Solid Earth 85(B3):1455–1461

    Article  Google Scholar 

  58. White JA, Chiaramonte L, Ezzedine S, Foxall W, Hao Y, Ramirez A, McNab W (2014) Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project. Proc Natl Acad Sci 111(24):8747–8752

    Article  Google Scholar 

  59. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  60. Yaghoubi A, Zoback M (2012) Hydraulic fracturing modeling using a discrete fracture network in the Barnett Shale. In American Geophysical Union, fall meeting

  61. Zhang B, Ji B, Liu W (2018) The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation. Geomech Geophys Geo-Energy Geo-Resour 4(2):119–127

    Article  Google Scholar 

  62. Zhou J, Chen M, Jin Y, Zhang GQ (2008) Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs. Int J Rock Mech Min Sci 45(7):1143–1152

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Total S.A. for funding this research project (contract FR00006163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric-Victor Donzé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsopela, A., Donzé, FV., Guglielmi, Y. et al. Hydromechanical reactivation of natural discontinuities: mesoscale experimental observations and DEM modeling. Acta Geotech. 14, 1585–1603 (2019). https://doi.org/10.1007/s11440-019-00791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00791-0

Keywords

Navigation