Skip to main content
Log in

Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): evidence from a large-scale regional study in clefts from the western alps

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In eleven Alpine clefts of the western Alps, in-situ dating of monazite-(Ce) and xenotime-(Y) has been attempted to gain insights on possible disturbances of the geochronological U-Th-Pb systems and age interpretations in hydrothermal conditions. In most clefts, monazite-(Ce) in-situ 208Pb/232Th dating using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) yields well-resolved ages (with errors typically <0.3 Ma, quoted at the 2σ level), indicative of a short duration monazite-(Ce) growth. However, monazite-(Ce) dating demonstrates two successive episodes of growth separated by several million years within two single clefts. Only in one cleft, complex age mixture in a porous and complex zoned monazite-(Ce) suggests disturbance of the 208Pb/232Th ages due to replacement by dissolution-precipitation processes. While some U-Pb ages are coherent with the 208Pb/232Th ages, U-Pb ages are generally disturbed by significant 206Pb excess in monazite-(Ce) with high Th/U ratio (>100). Xenotime-(Y) has remarkably high Th/U ratios and U-Pb dating is also disturbed by 206Pb excess, whereas 208Pb/232Th dating gave well-resolved ages (34.9 ± 0.5 Ma), close to but higher than the monazite-(Ce) age obtained in the same cleft (32.3 ± 0.3 Ma). Correlation of the monazite-(Ce) U-Th-Pb age dataset with other geochronological data suggests for monazite-(Ce) precipitation at periods of high tectonic activity. In the external massifs, monazite-(Ce) dating confirms a polyphased transpressive regime with activity periods around 13–11 Ma and 8–6 Ma. Older monazite-(Ce) ages in the Argentera massif (20.6 ± 0.3 Ma) are consistent with the regional diachronism in the western external Alps. In the 2 clefts of the internal massifs, monazite-(Ce) dating provides first ages of hydrothermal activity: the monazite-(Ce) age at 32.3 ± 0.3 Ma coincides with the exhumation along the Penninic front, but the monazite-(Ce) age at 23.3 ± 0.2 Ma is complex to attribute to a specific deformation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agard P, Monié P, Jolivet L, Goffé B (2002) Exhumation of the Schistes Lustrés complex: in situ laser probe 40Ar/39Ar constraints and implications for the western alps. J Metamorph Geol 20:599–618

    Article  Google Scholar 

  • Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism; hydrothermal growth kinetics, with implications for U, Th-Pb geochronology. Am Mineral 84:1766–1780

    Article  Google Scholar 

  • Baietto A, Perello P, Cadoppi P, Martinotti G (2009) Alpine tectonic evolution and thermal water circulations of the Argentera massif (south-western alps). Swiss J Geosci 102:223–245. doi:10.1007/s00015-009-1313-5

    Article  Google Scholar 

  • Bellanger M, Augier R, Bellahsen N, Jolivet L, Monié P, Baudin T, Beyssac O (2015) Shortening of the European Dauphinois margin (Oisans massif, western alps): new insights from RSCM maximum temperature estimates and 40Ar/39Ar in situ dating. J Geodyn 83:37–64

    Article  Google Scholar 

  • Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248

    Article  Google Scholar 

  • Berger A, Gnos E, Janots E, Whitehouse M, Soom M, Frei R, Waight TE (2013) Dating brittle tectonic movements with cleft monazite: fluid-rock interaction and formation of REE minerals. Tectonics 32:1176–1189

  • Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189. doi:10.1016/j.chemgeo.2008.10.043

    Article  Google Scholar 

  • Bertrand JM, Ailleres L, Gasquet D, Macaudiere J (1996) The Pennine front zone in Savoie (western alps), a review and new interpretations from the zone Houillere Brianconnaise. Eclogae Geol Helv 89:297–320

    Google Scholar 

  • Beucher R (2009) Évolution Néogène de l’Arc Alpin sud-occidental. Approches sismotectonique et thermochronologique. PhD thesis, Université Joseph Fourier, Grenoble, France

  • Beucher R, van der Beek P, Braun J, Batt GE (2012) Exhumation and relief development in the Pelvoux and Dora-Maira massifs (western alps) assessed by spectral analysis and inversion of thermochronological age transects. J Geophys Res 117:F03030. doi:10.1029/2011JF002240

    Article  Google Scholar 

  • Bigot-Cormier F, Sosson M, Poupeau G, Stephan J-F, Labrin E (2006) The denudation history of the Argentera alpine external crystalline massif (western alps, France-Italy): an overview from the analysis of fission tracks in apatites and zircons. Geodin Ac 19:455–473

    Article  Google Scholar 

  • Bogdanoff S, Michard A, Mansour M, Poupeau G (2000) Apatite fission track analysis in the Argentera massif: evidence of contrasting denudation rates in the external crystalline massifs of the western alps. Terra Nov. 12:117–125

  • Bonin B, Brändlein P, Bussy F, Desmons J, Eggenberger U, Finger F, Graf K, Marro C, Mercolli I, Oberhänsli R, Ploquin A, von Quadt A, von Raumer J, Schaltegger U, Steyrer HP, Visona D, Vivier G (1993) Late Variscan magmatic evolution of the alpine basement. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the alps. Springer, Berlin Heidelberg, pp. 171–201

    Chapter  Google Scholar 

  • Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, Cherneva Z, Gerdjikov I, Paquette JL (2009) Fluid-induced disturbance of the monazite Th-Pb chronometer: in situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302

    Article  Google Scholar 

  • Bucher S, Schmid SM, Bousquet R, Fügenschuh B (2003) Late-stage deformation in a collisional orogen (western alps): nappe refolding, back-thrusting or normal faulting? Terra Nov. 15:109–117

  • Budzyn B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Mineral 96:1547–1567. doi:10.2138/am.2011.3741

    Article  Google Scholar 

  • Bussy F, Von Raumer JF (1994) U-Pb geochronology of Palaeozoic magmatic events in the Mont Blanc crystalline massif. Western Alps, Schweiz Miner Petrog 74:514–515

    Google Scholar 

  • Cabral AR, Zeh A, Galbiatti HF, Lehmann B (2015) Late Cambrian Au-Pd mineralization and Fe enrichment in the Itabira District, Minas Gerais, Brazil, at 496 Ma: constraints from U-Pb monazite dating of a Jacutinga lode. Econ Geol 110:263–272

    Article  Google Scholar 

  • Campani M, Mancktelow N, Seward D, Rolland Y, Müller W, Guerra I (2010) Geochronological evidence for continuous exhumation through the ductile-brittle transition along a crustal-scale low-angle normal fault: Simplon fault zone, central alps: exhumation on a low-angle normal fault. Tectonics 29:TC3002. doi:10.1029/2009TC002582

    Article  Google Scholar 

  • Carpena J (1992) Fission-track dating of zircon: zircons from Mont-Blanc granite (french-italian alps). J Geol 100:411–421

    Article  Google Scholar 

  • Cenki-Tok B, Darling JR, Rolland Y, Dhuime B, Storey CD (2014) Direct dating of mid-crustal shear zones with synkinematic allanite: new in situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif. Terra Nov. 26:29–37. doi:10.1111/ter.12066

  • Ceriani S, Fügenschuh B, Schmid S (2001) Multi-stage thrusting at the “Penninic front” in the western alps between Mont Blanc and Pelvoux massifs. Int J Earth Sci 90:685–702. doi:10.1007/s005310000188

    Article  Google Scholar 

  • Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar massif shear zones (Swiss alps). Swiss J Geosci 101:269–288. doi:10.1007/s00015-008-1260-6

    Article  Google Scholar 

  • Cherniak DJ (2006) Pb and rare earth element diffusion in xenotime. Lithos 88:1–14. doi:10.1016/j.lithos.2005.08.002

    Article  Google Scholar 

  • Cherniak D, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Ac 68:829–840. doi:10.1016/j.gca.2003.07.012

    Article  Google Scholar 

  • Corfu F (1988) Differential response of u-pb systems in coexisting accessory minerals, Winnipeg river subprovince, Canadian shield - implications for archean crustal growth and stabilization. Contrib Mineral Petrol 98:312–325. doi:10.1007/BF00375182

    Article  Google Scholar 

  • Corsini M, Ruffet G, Caby R (2004) Alpine and late-hercynian geochronological constraints in the Argentera massif (western alps). Eclogae Geol Helv 97:3–15. doi:10.1007/s00015-004-1107-8

    Article  Google Scholar 

  • Crespo-Blanc A, Masson H, Sharp Z, Cosca M, Hunziker J (1995) A stable and 40Ar/39Ar isotope study of a major thrust in the Helvetic nappes (Swiss alps): evidence for fluid flow and constraints on nappe kinematics. Geol Soc Am Bull 107:1129–1144

    Article  Google Scholar 

  • Crouzet C, Ménard G, Rochette P (2001) Cooling history of the Dauphinoise zone (western alps, France) deduced from the thermopaleomagnetic record: geodynamic implications. Tectonophysics 340:79–93

    Article  Google Scholar 

  • Cruz MJ, Cunha JC, Merlet C (1996) Dataçaõ pontual das monazitas da regiaõ de Itambé, Bahia, através da microssonda electrônica. XXXIX Congresso Brasileiro de Geologia, vol. 2. Sociedade Brasileira de Geologià-Núcleo, Bahià-Segipe, pp. 206–209

    Google Scholar 

  • Cuney M, Mathieu R (2000) Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon. Geology 28:743–746

    Article  Google Scholar 

  • Debelmas J, Caby R, Desmons J, Dabrovski H, Fabre J, Mercier D, Pachoud A (1991) Geological map and explanatory text of the sheet n°728 Sainte-Foy-Tarentaise, scale: 1, 50000. edn BRGM

  • Dempster TJ (1986) Isotope systematics in minerals - biotite rejuvenation and exchange during alpine metamorphism. Earth Planet Sc Lett 78:355–367. doi:10.1016/0012-821x(86)90003-8

    Article  Google Scholar 

  • Didier A (2013) Comportement géochimique du chronomètre U-Th-Pb dans la monazite : approche par analyses in-situ au LA-ICP-MS. PhD thesis, Université Blaise Pascal, Clermont-Ferrand, France

  • Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, Devidal JL (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay dome, France). Contrib Mineral Petrol 165:1051–1072. doi:10.1007/s00410-012-0847-0

    Article  Google Scholar 

  • Didier A, Bosse V, Cherneva Z, et al. (2014) Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the central Rhodope (Bulgaria, Greece). Chem Geol 381:206–222. doi:10.1016/j.chemgeo.2014.05.020

    Article  Google Scholar 

  • Duchene S, Blichert Toft J, Luais B, Telouk P, Lardeaux JM, Albarede F (1997) The Lu-Hf dating of garnets and the ages of the alpine high-pressure metamorphism. Nature 387:586–589

    Article  Google Scholar 

  • Dumont T, Champagnac J-D, Crouzet C, Rochat P (2008) Multistage shortening in the Dauphiné zone (French alps): the record of alpine collision and implications for pre-alpine restoration. Swiss J Geosci 101:89–110. doi:10.1007/s00015-008-1280-2

    Article  Google Scholar 

  • Fabre J (1961) Contribution à l’étude de la zone Houillère Briançonnaise en Maurienne et en Tarentaise (Alpes de Savoie). Mém Bur Rech Géol Min 2:315 pp

  • Faure-Muret A (1955) Études géologiques Sur le massif de l’Argentera-Mercantour et ses enveloppes sédimentaires. Mém. Soc. Géol, France, 336 pp

  • Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U-Pb and Th-Pb dating of monazite. Chem Geol 270:31–44. doi:10.1016/j.chemgeo.2009.11.003

    Article  Google Scholar 

  • Freeman SR, Inger S, Butler RWH, Cliff RA (1997) Dating deformation using Rb-Sr in white mica: Greenschist facies deformation ages from the Entrelor shear zone, Italian alps. Tectonics 16:57–76. doi:10.1029/96tc02477

    Article  Google Scholar 

  • Freeman SR, Butler RWH, Cliff RA, Inger S, Barnicoat AC (1998) Deformation migration in an orogen-scale shear zone array: an example from the basal Briançonnais thrust, internal Franco-Italian alps. Geol Mag 135:349–367

    Article  Google Scholar 

  • Fudral S, Deville E, Nicoud G, Pognante U, Guillot PL, Jaillard E (1994) Geological map and explanatory text of the sheet n°776 Lanslebourg-Mont-d’Ambin, scale: 1, 50000. edn BRGM

  • Fügenschuh B, Schmid SM (2003) Late stages of deformation and exhumation of an orogen constrained by fission-track data: a case study in the western alps. Geol Soc Am Bull 115:1425–1440

    Article  Google Scholar 

  • Fügenschuh B, Loprieno A, Ceriani S, Schmid SM (1999) Structural analysis of the Subbriançonnais and Valais units in the area of Moûtiers (savoy, western alps): paleogeographic and tectonic consequences. Int J Earth Sci 88:201–218

    Article  Google Scholar 

  • Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Annu Rev Earth Pl Sc 26:519–572

    Article  Google Scholar 

  • Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite: an experimental study of interdiffusion. Geochim Cosmochim Ac 70:2325–2336. doi:10.1016/j.gca.2006.01.018

    Article  Google Scholar 

  • Gardés E, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2007) Pb diffusion in monazite: new constraints from the experimental study of interdiffusion. Geochim Cosmochim Ac 71:4036–4043. doi:10.1016/j.gca.2007.06.036

    Article  Google Scholar 

  • Gasquet D (1979) Etude pétrologique, géochimique et structurale des terrains cristallins de Belledonne et du Grand Chatelard traversés par les galeries EDF Arc-Isère, Alpes françaises. PhD thesis, Université de Grenoble, France

  • Gasquet D, Bertrand JM, Paquette JL, Lehmann J, Ratzov G, Guedes RDA, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-alpine basement massif of the French western alps: new U-Th-Pb and argon ages from the Lauzière massif. B Soc Geol Fr 181:227–241

    Article  Google Scholar 

  • Glotzbach C, Reinecker J, Danišík M, Rahn M, Frisch W, Spiegel C (2010) Thermal history of the central Gotthard and Aar massifs, European alps: evidence for steady state, long-term exhumation. J Geophys Res. doi:10.1029/2009JF001304

    Google Scholar 

  • Glotzbach C, van der Beek PA, Spiegel C (2011) Episodic exhumation and relief growth in the Mont Blanc massif, western alps from numerical modelling of thermochronology data. Earth Planet Sc Lett 304:417–430. doi:10.1016/j.epsl.2011.02.020

    Article  Google Scholar 

  • Gnos E, Janots E, Berger A, Whitehouse M, Walter F, Pettke T, C (2015) Age of cleft monazites in the eastern Tauern window: constraints on crystallization conditions of hydrothermal monazite. Swiss J Geosci doi:10.1007/s00015-015-0178-z

  • Grand’Homme A, Janots E, Seydoux-Guillaume A-M, Guillaume D, Bosse V, Magnin V (2016) Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement. Geology G37770:1. doi:10.1130/G37770.1

    Google Scholar 

  • Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. Am Mineral 95:1105–1108

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99:165–184. doi:10.1007/s00710-010-0110-1

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69. doi:10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Janots E, Rubatto D (2014) U–Th–Pb dating of collision in the external alpine domains (Urseren zone, Switzerland) using low temperature allanite and monazite. Lithos 184–187:155–166. doi:10.1016/j.lithos.2013.10.036

    Article  Google Scholar 

  • Janots E, Berger A, Gnos E, Whitehouse M, Lewin E, Pettke T (2012) Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in alpine hydrothermal monazite. Chem Geol 326-327:61–71. doi:10.1016/j.chemgeo.2012.07.014

    Article  Google Scholar 

  • Kempe U, Lehmann B, Wolf D, Rodionov N, Bombach K, Schwengfelder U, Dietrich A (2008) U–Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: an example from the Llallagua tin-porphyry deposit, Bolivia. Geochim Cosmochim Ac 72:4352–4366. doi:10.1016/j.gca.2008.05.059

    Article  Google Scholar 

  • Kirschner DL, Masson H, Cosca MA (2003) An 40 Ar/ 39 Ar, Rb/Sr, and stable isotope study of micas in low-grade fold-and-thrust belt: an example from the Swiss Helvetic alps. Contrib Mineral Petrol 145:460–480. doi:10.1007/s00410-003-0461-2

    Article  Google Scholar 

  • Kositcin N, McNaughton NJ, Griffin BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Ac 67:709–731. doi:10.1016/S0016-7037(02)01169-9

    Article  Google Scholar 

  • Kralik M, Clauer N, Holnsteiner R, Huemer H, Kappel F (1992) Recurrent fault activity in the grimsel test site (gts, Switzerland) - revealed by Rb-Sr, K-Ar and tritium isotope techniques. J Geol Soc Lond 149:293–301. doi:10.1144/gsjgs.149.2.0293

    Article  Google Scholar 

  • Krenn E, Putz H, Finger F, Paar WH (2011) Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern window, eastern alps). Mineral Petrol 102:51–62. doi:10.1007/s00710-011-0170-x

    Article  Google Scholar 

  • Lan Z-W, Chen ZQ, Li XH, Li B, Adams D (2013) Hydrothermal origin of the Paleoproterozoic xenotime from the king Leopold sandstone of the Kimberley group, Kimberley, NW Australia: implications for a ca 1.7 Ga far-field hydrothermal event. Aust J Earth Sci 60:497–508. doi:10.1080/08120099.2013.806360

    Article  Google Scholar 

  • Lanari P, Guillot S, Schwartz S, Vidal O, Tricart P, Riel N, Beyssac O (2012) Diachronous evolution of the alpine continental subduction wedge: evidence from P–T estimates in the Briançonnais zone houillère (France – western alps). J Geodyn 56-57:39–54. doi:10.1016/j.jog.2011.09.006

    Article  Google Scholar 

  • Lanari P, Rolland Y, Schwartz S, Vidal O, Guillot S, Tricart P, Dumont T (2014) P-T-t estimation of deformation in low-grade quartz-feldspar-bearing rocks using thermodynamic modelling and 40 Ar/ 39 Ar dating techniques: example of the plan-de-Phasy shear zone unit (Briançonnais zone, western alps). Terra Nov. 26:130–138. doi:10.1111/ter.12079

  • Lelarge L (1993) Thermochronologie par la méthode des traces de fission d’une marge passive (Dôme de Ponta Grossa, SE Brésil) et au sein d’une chaîne de collision (zone externe de l’arc alpin, France), PhD thesis, Université Joseph Fourier, Grenoble, France

  • Leloup PH, Arnaud N, Sobel ER, Lacassin R (2005) Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc: Exhumation of the Mont Blanc massif. Tectonics 24:n/a–n/a. doi:10.1029/2004TC001676

  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, Bourbon M, De Graciansky P, Rudkiewicz JL, Megard-Galli J, Tricart P (1986) The continental margin of the Mesozoic Tethys in the western alps. Mar Pet Geol 3:179–199. doi:10.1016/0264-8172(86)90044-9

    Article  Google Scholar 

  • Leutwein F, Poty B, Sonet J, Zimmerman JL (1970) Age des cavités à cristaux du granite du Mont Blanc. Cr Acad Sci D Nat 271:156–158

    Google Scholar 

  • Ludwig KR (2001) Isoplot/Ex rev. 2.49- A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology center. Special publication, No.1a

  • Malusà MG, Vezzoli G (2006) Interplay between erosion and tectonics in the western alps: interplay between erosion and tectonics. Terra Nov. 18:104–108. doi:10.1111/j.1365-3121.2006.00669.x

  • Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the western alps: insights from fission track thermochronology: exhumation in the western alps. Tectonics 24:TC3004. doi:10.1029/2004TC001782

    Article  Google Scholar 

  • Marshall D, Pfeifer HR, Hunziker JC, Kirschner D (1998) A pressure-temperature-time path for the NE Mont-Blanc massif; fluid-inclusion, isotopic and thermobarometric evidence. Eur J Mineral 10:1227–1240

    Article  Google Scholar 

  • Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo–Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171

    Article  Google Scholar 

  • Michalski I, Soom M (1990) The alpine thermo-tectonic evolution of the Aar and Gotthard massifs, Central Switzerland: fission track ages on zircon and apatite and K-Ar mica ages. Schweiz Miner Petrogr 70:373–387

    Google Scholar 

  • Moine B, Bosse V, Paquette JL, Ortega E (2014) The occurrence of a Tonian–Cryogenian (~850 Ma) regional metamorphic event in Central Madagascar and the geodynamic setting of the Imorona–Itsindro (~800 Ma) magmatic suite. J Afr Earth Sci 94:58–73

    Article  Google Scholar 

  • Mullis J (1996) P-T-t path of quartz formation in extensional veins of the central alps. Schweiz Miner Petrog 76:159–164

    Google Scholar 

  • Mullis J, Dubessy J, Poty B, O’Neil J (1994) Fluid regimesduring late stages of a continental collision — physical, chemical, and stable-isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the central alps. Switzerland Geochim Cosmochim Ac 10:2239–2267

    Article  Google Scholar 

  • Nziengui JJ (1993) Excès d’argon radiogénique dans les quartz des fissures tectoniques: implications pour la datation des séries métamorphiques. L’exemple de la coupe de la Romanche, Alpes Occidentales françaises. PhD thesis, Université Joseph Fourier, Grenoble, France

  • Paquette JL, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237. doi:10.1016/j.chemgeo.2007.02.014

    Article  Google Scholar 

  • Poitrasson F, Chenery S, Bland DJ (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sc Lett 145:79–96

    Article  Google Scholar 

  • Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration:: Implications for U-Th-Pb geochronology and nuclear ceramics. Geochim Cosmochim Ac 64:3283–3297

  • Poujol M, Boulvais P, Kosler J (2010) In-situ LA-ICP-MS U–Th–Pb dating of metasomaticfluid circulation: evidence of regional-scale albitization in the Pyrénées. J Geol Soc Lond 167:751–767

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708. doi:10.1180/0026461026650056

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269. doi:10.1111/j.1468-8123.2010.00285.x

    Google Scholar 

  • Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786. doi:10.1016/j.jssc.2007.03.023

    Article  Google Scholar 

  • Pyle JM (2006) Temperature-time paths from phosphate accessory phase paragenesis in the honey brook upland and associated cover sequence, SE Pennsylvania, USA. Lithos 88:201–232. doi:10.1016/j.lithos.2005.08.010

    Article  Google Scholar 

  • Rasmussen B (2005) Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Sci Rev 68:197–243. doi:10.1016/j.earscirev.2004.05.004

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR, Thorne WS, Broadbent GC (2007) Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U–Pb geochronology of hydrothermal xenotime. Earth Planet Sc Lett 258:249–259. doi:10.1016/j.epsl.2007.03.033

    Article  Google Scholar 

  • Roger F, Teyssier C, Respaut JP, Rey PF, Jolivet M, Whitney DL, Paquette JL, Brunel M (2015) Timing of formation and exhumation of the Montagne noire double dome, French massif central. Tectonophysics 640-641:53–69. doi:10.1016/j.tecto.2014.12.002

    Article  Google Scholar 

  • Rolland Y, Cox S, Boullier AM, Pennacchioni G, Mancktelow N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc massif (western alps). Earth Planet Sc Lett 214:203–219. doi:10.1016/S0012-821X(03)00372-8

    Article  Google Scholar 

  • Rolland Y, Rossi M, Cox SF, Corsini M, Mancktelow N, Pennacchioni G, Fornari M, Boullier AM (2008) 40Ar/39Ar dating of synkinematic white mica: insights from fluid-rock reaction in low-grade shear zones (Mont Blanc massif) and constraints on timing of deformation in the NW external alps. Geol Soc Spec Publ 299:293–315. doi:10.1144/SP299.18

    Article  Google Scholar 

  • Rolland Y, Cox SF, Corsini M (2009) Constraining deformation stages in brittle–ductile shear zones from combined field mapping and 40Ar/39Ar dating: the structural evolution of the Grimsel pass area (Aar massif, Swiss alps). J Struct Geol 31:1377–1394. doi:10.1016/j.jsg.2009.08.003

    Article  Google Scholar 

  • Rossi M, Rolland Y (2014) Stable isotope and Ar/Ar evidence of prolonged multiscale fluid flow during exhumation of orogenic crust: example from the Mont Blanc and Aar massifs (NW alps): multi-scale fluid flow in the alps. Tectonics 33:1681–1709. doi:10.1002/2013TC003438

    Article  Google Scholar 

  • Rossi M, Rolland Y, Vidal O, Cox SF (2005) Geochemical variations and element transfer during shear-zone development and related episyenites at middle crust depths: insights from the Mont Blanc granite (French—Italian alps). Geol Soc Spec Publ 245:373–396

    Article  Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of alpine metamorphism in the Sesia-Lanzo zone (western alps). Earth Planet Sc Lett 167:141–158. doi:10.1016/S0012-821X(99)00031-X

    Article  Google Scholar 

  • Sabil N (1995) La datation par traces de fission: aspects méthodologiques et applications thermochronologiques en contexte Alpin et de Marge Continentale. PhD thesis, Université Joseph Fourier, Grenoble, France

  • Sanchez G, Rolland Y, Jolivet M, Brichau S, Corsini M, Carter A (2011a) Exhumation controlled by transcurrent tectonics: the Argentera-Mercantour massif (SW alps): exhumation controlled by transcurrent tectonics in SW alps. Terra Nov. 23:116–126. doi:10.1111/j.1365-3121.2011.00991.x

  • Sanchez G, Rolland Y, Schneider J, Corsini M, Oliot E, Goncalves P, Verati C, Lardeaux J-M, Marquer D (2011b) Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour massif (SW alps). Lithos 125:521–536. doi:10.1016/j.lithos.2011.03.009

    Article  Google Scholar 

  • Schärer U (1984) The effect of initial Th-230 disequilibrium on young U-Pb ages - the makalu case, himalaya. Earth Planet Sc Lett 67:191–204. doi:10.1016/0012-821x(84)90114-6

    Article  Google Scholar 

  • Schmid SM, Kissling E (2000) The arc of the western alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85. doi:10.1029/1999TC900057

    Article  Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the alpine orogen. Eclogae Geol Helv 97:93–117. doi:10.1007/s00015-004-1113-x

    Article  Google Scholar 

  • Schwartz S (2000) La zone piémontaise des Alpes occidentales: un paléo-complexe de subduction. Arguments métamorphiques, géochronologiques et structuraux. PhD thesis, Université Claude Bernard, Lyon, France

  • Schwartz S, Lardeaux JM, Tricart P, Guillot S, Labrin E (2007) Diachronous exhumation of HP/LT metamorphic rocks from south-western alps: evidence from fission-track analysis. Terra Nov. 19:133–140. doi:10.1111/j.1365-3121.2006.00728.x

  • Seward D, Mancktelow NS (1994) Neogene kinematics of the central and western alps: evidence from fission-track dating. Geology 22:803–806

    Article  Google Scholar 

  • Seward D, Ford M, Bürgisser J, Lickorish H, Williams FA, Meckel LD (1999) Preliminary results of fission track analyses in the southern Pelvoux area, SE France. 3rd workshop on alpine geological studies. Mem Sci Geo Padova 51:25–31

    Google Scholar 

  • Seydoux-Guillaume AM, Paquette J-L, Wiedenbeck M, Montel JM, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Wirth R, Deutsch A, and Schärer U (2004) Microstructure of 24–1928 maconcordant monazites: implications for geochronology and nuclear waste deposits. Geochimica et Cosmochimica Acta 68:2517–2527. doi:10.1016/j.gca.2003.10.042

  • Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, de Parseval P, Paquette JL, Janots E, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem Geol 330-331:140–158. doi:10.1016/j.chemgeo.2012.07.031

    Article  Google Scholar 

  • Simon-Labric T, Rolland Y, Dumont T, Heymes T, Authemayou C, Corsini M, Fornari M (2009) 40 Ar/ 39 Ar dating of Penninic front tectonic displacement (W alps) during the lower Oligocene (31-34 Ma). Terra Nov. 21:127–136. doi:10.1111/j.1365-3121.2009.00865.x

  • Soom MA (1990) Abkühlungs- und Hebungsgeschichte der Externmassive und der Penninischen decken beidseits der Simplon-Rhone-Linie seit dem Oligozan: Spaltspurdatierungen an Apatit/Zirkon und K/Ar Datierungen an Biotit/Muskowit (westliche Zentralalpen). PhD thesis, Universität Bern, Switzerland

  • Strzerzynski P, Guillot S, Leloup PH, Arnaud N, Vidal O, Ledru P, Courrioux G, Darmendrail X (2012) Tectono-metamorphic evolution of the Briançonnais zone (Modane-Aussois and southern Vanoise units, Lyon Turin transect, western alps). J Geodyn 56-57:55–75. doi:10.1016/j.jog.2011.11.010

    Article  Google Scholar 

  • Tartese R, Boulvais P, Poujol M, Chevalier T, Paquette JL, Ireland TR, Deloule E (2012) Mylonites of the south Armorican shear zone: insights for crustal-scale fluid flow and water-rock interaction processes. J Geodyn 56-57:86–107. doi:10.1016/j.jog.2011.05.003

    Article  Google Scholar 

  • Tartèse R, Poujol M, Gloaguen E, Boulvais P, Drost K, Košler J, Ntaflos T (2015) Hydrothermal activity during tectonic building of the Variscan orogen recorded by U-Pb systematics of xenotime in the Grès Armoricain formation, massif Armoricain, France. Mineral Petrol 109:485–500. doi:10.1007/s00710-015-0373-7

    Article  Google Scholar 

  • Teufel S, Heinrich W (1997) Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chem Geol 137:273–281

    Article  Google Scholar 

  • Thiébaud E, Dzikowski M, Gasquet D, Renac C (2010) Reconstruction of groundwater flows and chemical water evolution in an amagmatic hydrothermal system (La Léchère, French alps). J Hydrol 381:189–202. doi:10.1016/j.jhydrol.2009.11.041

    Article  Google Scholar 

  • Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2001) Low temperature replacement of monazite in the Ireteba granite, southern Nevada: geochronological implications. Chem Geol 172:95–112. doi:10.1016/S0009-2541(00)00238-2

    Article  Google Scholar 

  • Tricart P, Van Der Beek P, Schwartz S, Labrin E (2007) Diachronous late-stage exhumation across the western alpine arc: constraints from apatite fission-track thermochronology between the Pelvoux and Dora-Maira massifs. J Geol Soc Lond 164:163–174

    Article  Google Scholar 

  • Vallini DA, Cannon WF, Schulz KJ (2006) Age constraints for Paleoproterozoic glaciation in the Lake superior region: detrital zircon and hydrothermal xenotime ages for the Chocolay group, Marquette range Supergroup. Can J Earth Sci 43:571–591. doi:10.1139/e06-010

    Article  Google Scholar 

  • Van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (ed) Laser ablation-ICP-MS in the Earth Science Mineralogical Association of Canada 29:239–243

  • Van der Beek PA, Valla PG, Herman F, Braun J, Persano C, Dobson KJ, Labrin E (2010) Inversion of thermochronological age–elevation profiles to extract independent estimates of denudation and relief history — II: application to the French western alps. Earth Planet Sc Lett 296:9–22. doi:10.1016/j.epsl.2010.04.032

    Article  Google Scholar 

  • Vance J (1999) Zircon fission track evidence for a Jurassic (Tethyan) thermal event in the western alps. Memorie di Scienze Geologiche, Padova 51:473–476

    Google Scholar 

  • VanEmden B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can Mineral 35:95–104

    Google Scholar 

  • Villa IM, Bucher S, Bousquet R, Kleinhanns IC, Schmid SM (2014) Dating polygenetic metamorphic assemblages along a transect across the western alps. J Petrol 55:803–830. doi:10.1093/petrology/egu007

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Harlov DE, Budzyń B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225. doi:10.1016/j.chemgeo.2011.01.019

    Article  Google Scholar 

  • Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon - an experimental-study. Chem Geol 122:249–258. doi:10.1016/0009-2541(95)00006-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the ANR-12-JS06-0001-01 (MONA) project and a grant from LabEx OSUG@2020 (Investissements d’avenir – ANR10 LABX56; France). We thank J. Valverde and F. Guichon for providing monazite crystals and their locations, E. Gnos and A.-M. Boullier for fruitful discussions in the field, N. Findling for his assistance with SEM, and finally T. Witcher who corrected the last version of the manuscript. L. Nasdala (editor), B. Schulz and an anonymous reviewer provided careful and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Janots.

Additional information

Editorial handling: L. Nasdala

Electronic Supplementary Material

ESM 1

(XLS 88 kb)

ESM 2

(XLS 138 kb)

ESM 3

(PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grand’Homme, A., Janots, E., Bosse, V. et al. Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): evidence from a large-scale regional study in clefts from the western alps. Miner Petrol 110, 787–807 (2016). https://doi.org/10.1007/s00710-016-0451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0451-5

Keywords

Navigation