Skip to main content

Advertisement

Log in

Intranasal instillation of iron oxide nanoparticles induces inflammation and perturbation of trace elements and neurotransmitters, but not behavioral impairment in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Over the last decades, engineered nanomaterials have been widely used in various applications due to their interesting properties. Among them, iron oxide nanoparticles (IONPs) are used as theranostic agents for cancer, and also as contrast agents in magnetic resonance imaging. With the increasing production and use of these IONPs, there is an evident raise of IONP exposure and subsequently a higher risk of adverse outcome for humans and the environment. In this work, we aimed to investigate the effects of sub-acute IONP exposure on Wistar rat, particularly (i) on the emotional and learning/memory behavior, (ii) on the hematological and biochemical parameters, (iii) on the neurotransmitter content, and (vi) on the trace element homeostasis. Rats were treated during seven consecutive days by intranasal instillations at a dose of 10 mg/kg body weight. The mean body weight increased significantly in IONP-exposed rats. Moreover, several hematological parameters were normal in treated rats except the platelet count which was increased. The biochemical study revealed that phosphatase alkaline level decreased in IONP-exposed rats, but no changes were observed for the other hepatic enzymes (ALT and AST) levels. The trace element homeostasis was slightly modulated by IONP exposure. Sub-acute intranasal exposure to IONPs increased dopamine and norepinephrine levels in rat brain; however, it did not affect the emotional behavior, the anxiety index, and the learning/memory capacities of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S, Zafari M, Akbari HR, Rad HG (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine 6:1117–1127

    CAS  Google Scholar 

  • Amara S, Ben-Slama I, Mrad I, Rihane N, Jeljeli M, el-Mir L, Ben-Rhouma K, Rachidi W, Sève M, Abdelmelek H, Sakly M (2014) Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats. Nanotoxicology 8(sup1):208–215. Available at. https://doi.org/10.3109/17435390.2013.879342

    Article  CAS  Google Scholar 

  • Announcement, S., 2015. FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol )., pp.1–4

  • Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M, van de Meent D, Popma JR, Rietveld AG, Wijnhoven SWP, Cassee FR, Oomen AG (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65(1):119–125

    Article  Google Scholar 

  • Chua AC, Morgan EH (1996) Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biol Trace Elem Res 55(1–2):39–54 Available at: http://www.ncbi.nlm.nih.gov/pubmed/8971353

    Article  CAS  Google Scholar 

  • Cortajarena, A.L. et al., 2014. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine, 1(2), p.doi: https://doi.org/10.5772/58841. Available at: http://www.intechopen.com/journals/nanobiomedicine/engineering-iron-oxide-nanoparticles-for-clinical-settings

  • Deguil J, Chavant F, Lafay-Chebassier C, Pérault-Pochat MC, Fauconneau B, Pain S (2010) Neuroprotective effect of PACAP on translational control alteration and cognitive decline in MPTP Parkinsonian mice. Neurotox Res 17(2):142–155

    Article  CAS  Google Scholar 

  • Elias, A. & Tsourkas, A., 2009. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program, pp.720–726

  • Enkel T et al (2014) Reduced expression of nogo-a leads to motivational deficits in rats. Front Behav Neurosci 8(January):1–7 Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3898325&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  • Grover VA, Hu J, Engates KE, Shipley HJ (2012) Adsorption and desorption of bivalent metals to hematite nanoparticles. Environ Toxicol Chem 31(1):86–92

    Article  CAS  Google Scholar 

  • Hasan DM, Amans M, Tihan T, Hess C, Guo Y, Cha S, Su H, Martin AJ, Lawton MT, Neuwelt EA, Saloner DA, Young WL (2012) Ferumoxytol-enhanced MRI to image inflammation within human brain arteriovenous malformations: a pilot investigation. Transl Stroke Res 3(SUPPL. 1):166–173

    Article  Google Scholar 

  • Huang HS, Hainfeld JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomedicine 8:2521–2532

    Google Scholar 

  • Von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100(1):27–40

    Article  CAS  Google Scholar 

  • Imam SZ, Lantz-McPeak SM, Cuevas E, Rosas-Hernandez H, Liachenko S, Zhang Y, Sarkar S, Ramu J, Robinson BL, Jones Y, Gough B, Paule MG, Ali SF, Binienda ZK (2015) Iron oxide nanoparticles induce dopaminergic damage: in vitro pathways and in vivo imaging reveals mechanism of neuronal damage. Mol Neurobiol 52(2):913–926

    Article  CAS  Google Scholar 

  • Kim E, Kim JM, Kim L, Choi SJ, Park IS, Han JY, Chu YC, Choi ES, Na K, Hong SS (2016) The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways. Int J Nanomedicine 11:4595–4607. https://doi.org/10.2147/IJN.S110332 

  • Kim Y, Kong SD, Chen LH, Pisanic TR II, Jin S, Shubayev VI (2013) In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. Nanomedicine 9(7):1057–1066

    Article  CAS  Google Scholar 

  • Labrie V et al (2009) Genetic inactivation of D-amino acid oxidase enhances extinction and reversal learning in mice. Learn Memory (Cold Spring Harbor, NY) 16(1):28–37. https://doi.org/10.1101/lm.1112209

  • Lemine OM, Omri K, Iglesias M, Velasco V, Crespo P, de la Presa P, el Mir L, Bouzid H, Yousif A, al-Hajry A (2014) ??-Fe2O3by sol-gel with large nanoparticles size for magnetic hyperthermia application. J Alloys Compd 607:125–131. Available at. https://doi.org/10.1016/j.jallcom.2014.04.002

    Article  CAS  Google Scholar 

  • Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85(5):315–319

    CAS  Google Scholar 

  • Maaroufi K, Ammari M, Jeljeli M, Roy V, Sakly M, Abdelmelek H (2009) Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate. Physiol Behav 96(2):343–349

    Article  CAS  Google Scholar 

  • Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DMA, Torres-Jardón R, Calderon-Garciduenas L (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci 113(39):10797–10801. Available at. https://doi.org/10.1073/pnas.1605941113

    Article  CAS  Google Scholar 

  • Morris R (1984) Developments of a water maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:7336–7336

    Article  Google Scholar 

  • Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67(1):53–83

    Article  CAS  Google Scholar 

  • Park E-J, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275(1–3):65–71 Available at: http://linkinghub.elsevier.com/retrieve/pii/S0300483X10002465

    Article  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  Google Scholar 

  • Pitkethly M (2008) Nanotechnology: past, present, and future. Nano Today 3(3–4):6

    Google Scholar 

  • Remy P, Doder M, Lees A, Turjanski N, Brooks D (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128(6):1314–1322

    Article  Google Scholar 

  • Van Rooy I et al (2011) In vivo methods to study uptake of nanoparticles into the brain. Pharm Res 28(3):456–471

    Article  CAS  Google Scholar 

  • Sadeghi L, Yousefi Babadi V, Espanani HR (2015) Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratislavske lekarske listy 116(6):373–378

    CAS  Google Scholar 

  • Sheida E et al (2017) The effect of iron nanoparticles on performance of cognitive tasks in rats. Environ Sci Poll Res 24(9):8700–8710 Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013081018&doi=10.1007%2Fs11356-017-8531 6&partnerID=40&md5=626b2c261f10e38bc9b09e725b40e087

    Article  CAS  Google Scholar 

  • Shirband A et al (2014) Dose-dependent effects of iron oxide nanoparticles on thyroid hormone concentrations in liver enzymes: possible tissue destruction. Global J Med Res Studies 1(1):28–31

    Google Scholar 

  • Simko M, Mattsson M-O (2014) Interactions between nanosized materials and the brain. Curr Med Chem 21(37):4200–4214 Available at: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=0929-8673&volume=21&issue=37&spage=4200

    Article  CAS  Google Scholar 

  • Sun Z et al (2014) Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier. Int J Nanomedicine 9(1):3013–3026

    Article  CAS  Google Scholar 

  • Szalay B, Tátrai E, Nyírő G, Vezér T, Dura G (2012) Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol 32(6):446–453. Available at. https://doi.org/10.1002/jat.1779

    Article  CAS  Google Scholar 

  • Umarao P, Bose S, Bhattacharyya S, Kumar A, Jain S (2016) Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s disease. J Nanosci Nanotechnol 16(1):261–269

    Article  CAS  Google Scholar 

  • Vayenas DV, Repanti M, Vassilopoulos A, Papanastasiou DA (1998) Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain. Int J Clin Lab Res 28(3):183–186 Available at: http://www.ncbi.nlm.nih.gov/pubmed/9801930

    Article  CAS  Google Scholar 

  • Wang L, Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10:8617–8624

    Article  CAS  Google Scholar 

  • Wáng YXJ, Idée J-M (2017) A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 7(1):88–122 Available at: http://qims.amegroups.com/article/view/13786/14098

    Article  Google Scholar 

  • Yah CS, Iyuke SE, Simate GS (2012) A review of nanoparticles toxicity and their routes of exposures. Iran J Pharm Sci 8(1):299–314

    Google Scholar 

  • Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A (2017) Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci 18(1):51. Available at:. https://doi.org/10.1186/s12868-017-0369-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Lassaad El Mir for providing iron oxide nanoparticles and the equipex NanoID (ANR-10-EQPX-39) for the access to the nanoZS. Thanks also to the Tunisian Ministry of Higher Education and Scientific Research and the Auvergne Rhone Alpes Region (grant no. 16.007278.01 for Dalel Askri) for their funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalel Askri.

Ethics declarations

The experimental protocols were approved by the Medical Ethical Committee for the Care and Use of Laboratory Animals of Pasteur Institute of Tunis (approval number: LNFP/Pro 152012).

Conflict of interest

The authors report no conflicts of interest in this work.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askri, D., Ouni, S., Galai, S. et al. Intranasal instillation of iron oxide nanoparticles induces inflammation and perturbation of trace elements and neurotransmitters, but not behavioral impairment in rats. Environ Sci Pollut Res 25, 16922–16932 (2018). https://doi.org/10.1007/s11356-018-1854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1854-0

Keywords

Navigation