Skip to main content
Log in

Kinetics of FeSe2 oxidation by ferric iron and its reactivity compared with FeS2

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The mobility and bioavailability of selenium is a major health and environmental issue and a main concern for geological disposal of high-level radioactive waste. Chemically and/or microbially mediated oxidation of insoluble Se-bearing particulate, such as iron selenides, to dissolved and mobile phases controls the transport and distribution of Se in the environment. The oxidation of ferroselite (FeSe2) by ferric iron was investigated in anoxic conditions. The redox reaction can be represented by: FeSe2 + 2Fe3+ = 2Se0 + 3Fe2+. Kinetic studies indicated that the reaction can be described by second-order rate law, with rate constants of 0.49±0.01, 0.85±0.02, 1.84±0.04, and 3.29±0.13 L mol−1 s−1 at pH 1.62, 1.87, 2.23, and 2.49, respectively. The positive correlation between reaction rate and pH implies that diffusion of Fe3+ oxidant to the mineral surface is the rate-determining step. The strong reactivity of FeSe2 towards Fe3+ suggests that ferric iron may play a significant role in FeSe2 oxidation process (e.g., by Se4+, O2, etc.) and Se0 should be the first reaction product. Also, it was shown that the reduction rate of Fe3+ or Se4+ by pyrite (FeS2) can be significantly increased in the presence of FeSe2, suggesting a stronger reactivity of FeSe2 compared with pyrite. The results obtained extend our knowledge about the subtle interaction between Se, pyrite and iron selenides in the environment, and give insight into the transfer of selenium from iron selenides to bio-available selenium (i.e., selenite and selenate) in the Se-rich environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang GQ, Wang SZ, Zhou RH, Sun SZ. Endemic selenium intoxication of humans in China. Am J Clin Nutr, 1983, 37: 872–881

    CAS  Google Scholar 

  2. Mao DJ, Su HC, Yan LR. An epidemiologic investigation on selenium poisoning in southwestern Hubei Province (in Chinese). Chin J Endemiol, 1990, 9: 311–314

    Google Scholar 

  3. Fordyce FM, Zhang GD, Green K, Liu XP. Soil, grain and water chemistry in relation to human selenium-responsive diseases in enshi district, China. Appl Geochem, 2000, 15: 117–132

    Article  CAS  Google Scholar 

  4. Rayman MP. Food-chain selenium and human health: emphasis on intake. Br J Nutr, 2008, 100: 254–268

    CAS  Google Scholar 

  5. Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L. Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol, 2012, 46: 571–579

    Article  CAS  Google Scholar 

  6. Cao ZH, Wang XC, Yao DH, Zhang XL, Wong MH. Selenium geochemistry of paddy soils in Yangtze River Delta. Environ Int, 2001, 26: 335–339

    Article  CAS  Google Scholar 

  7. Tan JA, Zhu WY, Wang WY, Li RB, Hou SF, Wang DC, Yang LS. Selenium in soil and endemic diseases in China. Sci Total Environ, 2002, 284: 227–235

    Article  CAS  Google Scholar 

  8. Howard JH. Geochemistry of selenium: formation of ferroselite and selenium behavior in the vicinity of oxidizing sulfide and uranium deposits. Geochim Cosmochim Acta, 1977, 41: 1665–1678

    Article  CAS  Google Scholar 

  9. Wen H, Carignan J, Qiu Y, Liu S. Selenium speciation in kerogen from two Chinese selenium deposits: environmental implications. Environ Sci Technol, 2006, 40: 1126–1132

    Article  CAS  Google Scholar 

  10. Pan JY, Liu CD, Guo GL, Chen AP, Chen FZ, Yan ZB, Chen YP, Wu RG. The discovery of selenium-bearing minerals in the Tamusu sandstone-type uranium deposits, Inner Mongolia, China and its significance (in Chinese). Acta Mineraligica Sinica, 2009, 29: 44–48

    CAS  Google Scholar 

  11. Zhu J-M, Johnson TM, Finkelman RB, Zheng B-S, Sýkorová I, Pešek J. The occurrence and origin of selenium minerals in Se-rich stone coals, spoils and their adjacent soils in Yutangba, China. Chem Geol, 2012, 330–331: 27–38

    Article  Google Scholar 

  12. Fordyce F. Selenium geochemistry and health. Ambio, 2007, 36: 94–97

    Article  CAS  Google Scholar 

  13. Yudovich YE, Ketris MP. Selenium in coal: a review. Int J Coal Geol, 2006, 67: 112–126

    Article  CAS  Google Scholar 

  14. Koch-Steindl H, Prohl G. Considerations on the behaviour of long-lived radionuclides in the soil. Radiat Environ Biophys, 2001, 40: 93–104

    Article  CAS  Google Scholar 

  15. Rovira M, Gimenez J, Martinez M, Martinez-Llado X, de Pablo J, Marti V, Duro L. Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J Hazard Mater, 2008, 150: 279–284

    Article  CAS  Google Scholar 

  16. Saeki K, Matsumoto S, Tatsukawa R. Selenite adsorption by manganese oxides. Soil Sci, 1995, 160: 265–272

    Article  CAS  Google Scholar 

  17. Baryosef B, Meek D. Selenium sorption by kaolinite and montmorillonite. Soil Sci, 1987, 144: 11–19

    Article  CAS  Google Scholar 

  18. Coppin F, Chabroullet C, Martin-Garin A. Selenite interactions with some particulate organic and mineral fractions isolated from a natural grassland soil. Eur J Soil Sci, 2009, 60: 369–376

    Article  CAS  Google Scholar 

  19. Bienvenu P, Cassette P, Andreoletti G, Be M-M, Comte J, Lepy M-C. A new determination of Se-79 half-life. Appl Radiat Isot, 2007, 65: 355–364

    Article  CAS  Google Scholar 

  20. Chen FR, Burns PC, Ewing RC. Se-79: Geochemical and crystallo-chemical retardation mechanisms. J Nucl Mater, 1999, 275: 81–94

    Article  CAS  Google Scholar 

  21. Grambow B. Mobile fission and activation products in nuclear waste disposal. J Contam Hydrol, 2008, 102: 180–186

    Article  CAS  Google Scholar 

  22. Belzile N, Chen YW, Xu RR. Early diagenetic behaviour of selenium in freshwater sediments. Appl Geochem, 2000, 15: 1439–1454

    Article  CAS  Google Scholar 

  23. Ryser AL, Strawn DG, Marcus MA, Johnson-Maynard JL, Gunter ME, Moller G. Micro-spectroscopic investigation of selenium-bearing minerals from the Western US Phosphate Resource Area. Geochem Trans, 2005, 6: 1–11

    Article  CAS  Google Scholar 

  24. Cabral AR, Koglin N, Bratz H. Gold-bearing ferroselite (FeSe2) from Trogtal, Harz, Germany, and significance of its Co/Ni ratio. J Geosci, 2012, 57: 265–272

    CAS  Google Scholar 

  25. Charlet L, Kang ML, Bardelli F, Kirsch R, Géhin A, Grenèche JM, Chen FR. Nanocomposite pyrite-greigite reactivity toward Se(IV)/Se(VI). Environ Sci Technol, 2012, 46: 4869–4876

    Article  CAS  Google Scholar 

  26. Kang ML, Liu CL, Chen FR. The reduction of selenite by Fe(II)-containing minerals (in Chinese). Sci China Chem, 2013, 43: 536–543

    CAS  Google Scholar 

  27. Frankenberger WT, Engberg RA. Environmental Chemistry of Selenium. New York: Marcel Dekker Inc., 1998

    Google Scholar 

  28. Rimstidt JD, Vaughan DJ. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta, 2003, 67: 873–880

    Article  CAS  Google Scholar 

  29. Williamson MA, Rimstidt JD. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta, 1994, 58: 5443–5454

    Article  CAS  Google Scholar 

  30. Moses CO, Herman JS. Pyrite oxidation at circumneutral pH. Geochim Cosmochim Acta, 1991, 55: 471–482

    Article  CAS  Google Scholar 

  31. Kang ML, Ma B, Bardelli F, Chen FR, Liu CL, Zheng Z, Wu SJ, Charlet L. Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: implication to Se redox process. J Hazard Mater, 2013, 248–249: 20–28

    Article  Google Scholar 

  32. Curti E, Aimoz L, Kitamura A. Selenium uptake onto natural pyrite. J Radioanal Nucl Chem, 2013, 295: 1655–1665

    Article  CAS  Google Scholar 

  33. Kang ML, Chen FR, Wu SJ, Yang YQ, Bruggeman C, Charlet L. Effect of pH on aqueous Se(IV) reduction by pyrite. Environ Sci Technol, 2011, 45: 2704–2710

    Article  CAS  Google Scholar 

  34. Breynaert E, Scheinost AC, Dom D, Rossberg A, Vancluysen J, Gobechiya E, Kirschhock CEA, Maes A. Reduction of Se(IV) in boom clay: XAS solid phase speciation. Environ Sci Technol, 2010, 44: 6649–6655

    Article  CAS  Google Scholar 

  35. Breynaert E, Bruggeman C, Maes A. XANES-EXAFS analysis of Se solid-phase reaction products formed upon contacting Se(IV) with FeS2 and FeS. Environ Sci Technol, 2008, 42: 3595–3601

    Article  CAS  Google Scholar 

  36. Liu AP, Chen XY, Zhang ZJ, Jiang Y, Shi CW. Selective synthesis and magnetic properties of FeSe2 and FeTe2 nanocrystallites obtained through a hydrothermal co-reduction route. Solid State Commun, 2006, 138: 538–541

    Article  CAS  Google Scholar 

  37. Wei DW, OsseoAsare K. Particulate pyrite formation by the Fe3+/HS reaction in aqueous solutions: effects of solution composition. Colloid Surf A-Physicochem Eng Asp, 1996, 118: 51–61

    Article  CAS  Google Scholar 

  38. Liu X, Fattahi M, Montavon G, Grambow B. Selenide retention onto pyrite under reducing conditions. Radiochim Acta, 2008, 96: 473–479

    CAS  Google Scholar 

  39. Diener A, Neumann T. Synthesis and incorporation of selenide in pyrite and mackinawite. Radiochim Acta, 2011, 99: 791–798

    Article  CAS  Google Scholar 

  40. Xie Y, Zhu LY, Jiang XC, Lu J, Zheng XW, He W, Li YZ. Mild hydrothermal-reduction synthesis and mossbauer study of low-dimensional iron chalcogenide microcrystals and single crystals. Chem Mat, 2001, 13: 3927–3932

    Article  CAS  Google Scholar 

  41. Yang J, Cheng GH, Zeng JH, Yu SH, Liu XM, Qian YT. Shape control and characterization of transition metal diselenides MSe2 (M = Ni, Co, Fe) prepared by a solvothermal-reduction process. Chem Mat, 2001, 13: 848–853

    Article  CAS  Google Scholar 

  42. Yuan B, Luan W, Tu S-T. One-step synthesis of cubic FeS2 and flower-like FeSe2 particles by a solvothermal reduction process. Dalton Trans, 2012, 41: 772–776

    Article  CAS  Google Scholar 

  43. Chakrabrty S, Bardelli F, Charlet L. Reactivities of Fe(II) on calcite: Selenium reduction. Environ Sci Technol, 2010, 44: 1288–1294

    Article  Google Scholar 

  44. Charlet L, Scheinost AC, Tournassat C, Greneche JM, Gehin A, Fernandez-Martinez A, Coudert S, Tisserand D, Brendle J. Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochim Cosmochim Acta, 2007, 71: 5731–5749

    Article  CAS  Google Scholar 

  45. Nesbitt HW, Bancroft GM, Pratt AR, Scaini MJ. Sulfur and iron surface states on fractured pyrite surfaces. Am Miner, 1998, 83: 1067–1076

    CAS  Google Scholar 

  46. Eggleston CM, Ehrhardt JJ, Stumm W. Surface structural controls on pyrite oxidation kinetics: an XPS-UPS, STM, and modeling study. Am Miner, 1996, 81: 1036–1056

    CAS  Google Scholar 

  47. Descostes M, Schlegel ML, Eglizaud N, Descamps F, Miserque F, Simoni E. Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim Cosmochim Acta, 2010, 74: 1551–1562

    Article  CAS  Google Scholar 

  48. Schaufuss AG, Nesbitt HW, Kartio I, Laajalehto K, Bancroft GM, Szargan R. Incipient oxidation of fractured pyrite surfaces in air. J Electron Spectrosc Relat Phenom, 1998, 96: 69–82

    Article  CAS  Google Scholar 

  49. Elsetinow AR, Guevremont JM, Strongin DR, Schoonen MAA, Strongin M. Oxidation of {100} and {111} surfaces of pyrite: effects of preparation method. Am Miner, 2000, 85: 623–626

    CAS  Google Scholar 

  50. Wiersma CL, Rimstidt JD. Rates of reaction of pyrite and marcasite with ferric iron at pH-2. Geochim Cosmochim Acta, 1984, 48: 85–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChunLi Liu or MingLiang Kang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Nie, Z., Liu, C. et al. Kinetics of FeSe2 oxidation by ferric iron and its reactivity compared with FeS2 . Sci. China Chem. 57, 1300–1309 (2014). https://doi.org/10.1007/s11426-014-5126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5126-7

Keywords

Navigation