Skip to main content
Log in

Long-Lasting Influence of the Discovery Plume on Tholeiitic Magmatism in the South Atlantic: Data on Basalts Recovered by Hole 513a, DSDP Leg 71

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents the very first data on concentrations of major and trace elements; Sr, Nd, and Pb isotopic ratios of rocks; and the composition of olivine phenocrysts of 38-Ma basalts recovered by Hole 513a (DSDP Leg 71) in the South Atlantic. The bulk-rock samples and the chilled glasses are mildly magnesian (7–8 wt % MgO) and bear elevated FeO and low Na2O concentrations, as is typical of MORB of the TOR-1 type. Olivine phenocrysts (Fo84.5–88) in these rocks contain concentrations of trace elements (Ni, Mn, Cr, and Zn) that are typical of classic MORB, which are produced by partial melting of mantle peridotite. The rocks are strongly depleted in incompatible elements [(La/Sm)n ~ 0.6] but have elevated Ba/Nb, K/Nb, and Pb/Ce ratios and Cu, Ag, and Au concentrations that are 1.5–4 times higher than in typical depleted MORB (N-MORB) and in most rift basalts in the South Atlantic. Isotope compositions of the basalts (average ratios 206Pb/204Pb ~ 18.0; 207Pb/204Pb ~ 15.6, 208Pb/204Pb ~ 38.0, 143Nd/144Nd ~ 0.5130, and 87Sr/86Sr ~ 0.7040) are close to those in modern tholeiites from the southern MAR segment (SMAR) north of the Agulhas Fracture Zone. The data indicate that the magmas were derived from a strongly depleted mantle source that contained a minor (~3%) admixture of an enriched component, which is discernible in the magmas of the Discovery hotspot. The composition of the source, which is more depleted than DM, and the high degrees of melting of this source explain why the basalts from DSDP Hole 513a are enriched in chalcophile elements. It is believed that spreading magmatism at 45°–48° S in SMAR as far back as 40 Ma was already affected by the Discovery hotspot. This hotspot might be related to the Tristan plume system, and its origin and long-lasting influence on spreading magmatism in the South Atlantic are regarded as evidence of the extensive effect of the Tristan plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. A. Ariskin, M. Ya. Frenkel, and T. I. Tsekhonya, “High-pressure fractional crystallization of tholeiitic magmas,” Geochem. Int. 27(9), 10–20 (1990).

    Google Scholar 

  2. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231-239 (2011).

    Article  Google Scholar 

  3. V. G. Batanova, A. V. Sobolev, and D. V. Kuzmin, “Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser,” Chem. Geol. 419, 149–157 (2015).

    Article  Google Scholar 

  4. C. Class and A. P. le Roex, “Continental material in the shallow oceanic mantle—how does it get there?,” Geology 34, 129–132 (2007).

    Article  Google Scholar 

  5. C. Class and A. P. le Roex, “South Atlantic DUPAL anomaly—Dynamic and compositional evidence against a recent shallow origin,” Earth Planet. Sci. Lett. 305, 92–102 (2011).

    Article  Google Scholar 

  6. D. Davies, R. S. Goes, and M. Sambridge, “On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure,” Earth Planet. Sci. Lett. 411, 121–130 (2015).

    Article  Google Scholar 

  7. J. Douglass, J.-G. Schilling, D. Fontignie, “Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°–55° S),” J. Geophys. Res. 104 (B2), 2941–2962 (1999).

    Article  Google Scholar 

  8. E. P. Dubinin, Yu. I. Galushkin, and A. V. Rozova, “Estimation of the Influence of the Kerguelen and Amsterdan–St. Paul hot spots on the thermal regime of the rift zone of the Eastwestern Indian Ridge,” Zhizn’ Zemli: Zemlevedenie, Ekologiya, Geodinamika, Muzeologiya 34, 4–24 (2012).

    Google Scholar 

  9. E. P. Dubinin, Yu. I. Galushkin, and N. M. Sushchevskaya, “Spreading ridges and transform faults,” World Ocean. Volume 1. Geology and Tectonics of Ocea. Catastrophic Phenomena in Ocean, Ed. by L. I. Lobkovsky (Nauchnyi Mir, Moscow, 2013), pp. 92–170 [in Russian].

  10. R. V. Fodor, S. B. Mukasa, A. N. Sial, “Isotopic and trace-element indications of lithospheric and asthenospheric components in Tertiary alkalic basalts, northeastern Brazil,” Lithos 43, 197–217 (1998).

    Article  Google Scholar 

  11. GeoRock // http:georoc.mpch-mainz.gwdg.de//georoc/

  12. S. A. Gibson, R. N. Thompson, J. A. Day, S. E. Humphris, and A. P. Dickin, “Melt-generation processes associated with the Tristan mantle plume: constraints on the origin of EM-1,” Earth Planet. Sci. Lett. 237, 744–767 (2005).

    Article  Google Scholar 

  13. R. Golowin, M. Portnyagin, K. Hoernle, F. Hauff, A. Gurenko, D. Garbe-Schönberg, R. Werner, and S. Turner, “Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components,” Nature Communications 8 (14322), 1–10 (2017).

    Article  Google Scholar 

  14. A. L. Grokhol’skii, E. P. Dubinin, K. T. Senyavin, and Yu. I. Galushkin, “Experimental modelin of interaction between hot spot and spreading ridge by the example of the Southeastern Indian Ridge,” Zhizn’ Zemli: Zemlevedenie, Ekologiya, Geodinamika, Muzeologiya 34, 150–178 (2014).

    Google Scholar 

  15. S. R. Hart, “Heterogeneous mantle domains: signatures, genesis and mixing chronologies,” Earth Planet. Sci. Lett. 90 (3), 273–296 (1988).

    Article  Google Scholar 

  16. K. Hoernle, J. Rohde, F. Hauff, D. Garbe-Schönberg, S. Homrighausen, R. Werner, and J. P. Morgan, “How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot,” Nature Communications 6 (7799), 1–10 (2015).

    Article  Google Scholar 

  17. E. E. E. Hooft, B. Brandsdottir, R. Mjelde, H. Shimamura, and Y. Murai, “Asymmetric plume-ridge interaction around Iceland: The Kolbeinsey Ridge Iceland Seismic Experiment,” Geochem.Geophys. Geosyst. 7 (5), 1–26 (2006).

    Article  Google Scholar 

  18. S. E. Humphris, G. Thompson, J.-G. Schilling, and R. H. Kingsley, “Petrological and geochemical variations along the Mid-Atlantic Ridge between 46° S and 32° S: influence of the Tristan da Cunha mantle plume,” Geochim. Cosmochim. Acta 49, 1445–1464 (1985).

    Article  Google Scholar 

  19. E. J. Jarosewich, J. A. Nelen, and J. A. Norberg, “Reference samples for electron microprobe analysis,” Geostand. Newslett. 4, 43–47 (1980).

    Article  Google Scholar 

  20. F. E. Jenner, R. J. Arculus, J. A. Mavrogenes, N. J. Dyriw, O. Nebel, and E. H. Hauri, “Analysis of 60 elements in 616 ocean floor basaltic glasses,” Geochem. Geophys. Geosyst. 13 (1), 1–11 (2012).

    Article  Google Scholar 

  21. K. P. Jochum, B. Stoll, K. Herwig, M. Willbold, A. W. Hofmann, M. Amini, S. Aarburg, W.Abouchami, E. Hellebrand, B. Mocek, I. Raczek, A. Stracke, O. Alard, C. Bouman, S. Becker, et al., “MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios,” Geochem.Geophys. Geosyst. 7 (2), 1–44 (2006).

    Article  Google Scholar 

  22. K. P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D. E. Jacob, A. Stracke, K. Birbaum, and D. A. Frick “Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines,” Geostand. Geoanalyt. Res. 35(4), 397–429 (2011).

    Article  Google Scholar 

  23. K. A. Kelley, R. Kingsley and J.-G. Schilling, “Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden,” Geochem.Geophys. Geosyst. 14 (1), 223–242 (2013).

    Article  Google Scholar 

  24. E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” J. Geophys. Res. 92(B4), 8089–8115 (1987).

    Article  Google Scholar 

  25. A. P. Le Roex, C. Class, J. O’Connor, and W. Jokat, “Shona and Discovery aseismic ridge systems, South Atlantic: trace element evidence for enriched mantle sources,” J. Petrol. 51(10), 2089–2120 (2010).

    Article  Google Scholar 

  26. P. J. Le Roux, A. P. le Roex, and J.-G. Schilling, “MORB melting processes beneath the southern Mid-Atlantic Ridge (40–55° S): a role for mantle plume-derived pyroxenite,” Contrib. Mineral. Petrol. 144, 206–229 (2002).

    Article  Google Scholar 

  27. P. J. Le Roux, A. P. le Roex, J.-G. Schilling, N. Shimizu, W. W. Perkins, N. J. G. Pearce, “Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle,” Earth Planet. Sci. Lett. 203, 479–498 (2002).

    Article  Google Scholar 

  28. C.-T. A. Lee, P. Luffi, E. J. Chin, R. Bouchet, R. Dasgupta, D. M. Morton, V. Le Roux, Q.-Z. Yin, and D. Jin, “Copper systematics in arc magmas and implications for crust–mantle differentiation,” Science 336 (6077), 64–68 (2012).

    Article  Google Scholar 

  29. H. P. Longerich, S. E. Jackson, and D. Günther, “Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation,” J. Analyt. Atom. Spectrom. 11, 899–904 (1996).

    Article  Google Scholar 

  30. M. V. Luchitskaya, B. V. Belyatsky, E. A. Belousova, and L. M. Natapov, “Composition and geodynamic setting of Late Paleozoic magmatism of Chukotka,” Geochem. Int. 55 (8), 683-710 (2017).

    Article  Google Scholar 

  31. W. J. Ludwig, V. A. Krasheninnikov, I. A. Basov, U. Bayer, J. Bloemendal, B. Bornhold, P. F. Ciesielski, E. H. Goldstein, C. Robert, J. Salloway, J. L. Usher, H. von der Dick, F. M. Weaver and S. W. Wise, Jr., Initial Reports of the Deep Sea Drilling Project, 71 (1983)

  32. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  33. E. N. Melankholina and N. M. Sushchevskaya, “Tectono-magmatic evolution of the South Atlantic continental margins with respect to opening of the ocean,” Geotectonics, 52 (2), 173–193 (2018).

    Article  Google Scholar 

  34. W. G. Melson, T. O’Hearn, and E. Jarosewich, “A data brief on the Smithsonian Abyssal Volcanic Glass Data File,” Geochem. Geophys. Geosyst. 3 (4), 1–11 (2002).

    Article  Google Scholar 

  35. N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D. V. Kuzmin, “Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts,” Russ. Geol. Geophys 58 (11), 1289–1304 (2017).

    Article  Google Scholar 

  36. R. D. Muller, W. R. Roest, and J.-Y. Royer, “Asymmetic seafloor spreading expresses ridge-plume interactions,” Nature 396, 455–459 (1998).

    Article  Google Scholar 

  37. R. D. Muller, C. Gaina, W. R. Roest, and D. L. Hansen, “A recipe for microcontinent formation,” Geology 29 (3), 203–206 (2001).

    Article  Google Scholar 

  38. B. J. Murton and L. M. Parson, “Segmentation, volcanism and deformation of oblique spreading centers: a quantitative study of the Reykjanes Ridge,” Tectonophysics 222, 237–257 (1993).

    Article  Google Scholar 

  39. V. Ponomareva, M. Portnyagin, I. F. Pendea, E. Zelenin, J. Bourgeois, T. Pinegina, and A. Kozhurin, “A full Holocene tephrochronology for the Kamchatsky Peninsula region: applications from Kamchatka to North America,” Quatern. Sci. Rev. 168, 101–122 (2017).

    Article  Google Scholar 

  40. Yu. M. Pushcharovsky, A. A. Peyve, S. G. Skolotnev, E. S. Bazilevskaya, Yu. N. Raznitsyn, and A. E. Eskin, Tectonics and Ferromanganese Metallogeny of the Atlantic Ocean (GEOS, Moscow, 2011) [in Russian].

    Google Scholar 

  41. S. H. Richardson, A. J. Erlank, A. R. Duncan, D. L. Reid, “Correlated Nd, Sr and Pb isotope variations in Walvis Ridge basalts and implications for the evolution of their mantle source,” Earth Planet. Sci. Lett. 59, 327–342 (1982).

    Article  Google Scholar 

  42. J. K. Rohde, P. Van den Bogaard, K. Hoernle, R. Werner, “Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases,” Tectonophysics 604, 60–71 (2013).

    Article  Google Scholar 

  43. V. J. M. Salters and A. Sachi-Kocher, “An ancient metasomatic source for the Walvis Ridge basalts fluids,” Chem. Geol. 273, 151–167 (2010).

    Article  Google Scholar 

  44. V. J. M. Salters and A. Stracke, “Composition of the depleted mantle,” Geochem. Geophys. Geosyst. 5(5), 1–27 (2004).

    Article  Google Scholar 

  45. D. Sauter, M. Cannat, C. Meyzen, A. Bezos, P. Patriat, E. Humler, and E. Debayle, “Propagation of a melting anomaly along the ultraslow Southwest Indian ridge between 46° E and 52°20´ E: interaction with Crozet hotspot?,” Geophys. J. Int. 179, 687–699 (2009).

    Article  Google Scholar 

  46. J.-G. Schilling, G. Thompson, R. H. Kingsley, and S. E. Humphris, “Hotspot migrating ridge interaction in the South Atlantic: geochemical evidence,” Nature 313, 187–191 (1985).

    Article  Google Scholar 

  47. A. Schwindrofska, K. Hoernle, F. Hauff, P.van den Bogaard, R. Werner, and D. Garbe-Schönberg, “Origin of enriched components in the South Atlantic: Evidence from 40Ma geochemical zonation of the Discovery Seamounts,” Earth Planet. Sci. Lett. 441, 167–177 (2016).

    Article  Google Scholar 

  48. R. C. Searle, J. A. Keeton, R. B. Owens, R. S. White, R. Mecklenburgh, B. Parsons, S. M. Lee, “The Reykjanes Ridge: structure and tectonics of a hot-spot-influenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations,” Earth Planet. Sci. Lett. 160, 463–478 (1998).

    Article  Google Scholar 

  49. W. Siebel, R. Becchio, F. Volker, M. A. F. Hansen, J. Viramonte, R. B. Trumbull, G. Haase, and M. Zimmer, “Trindade and Martin Vaz islands, South Atlantic: isotopic (Sr, Nd, Pb) and trace element constraints on plume related magmatism,” J. S. Am. Earth Sci.13, 79–103 (2000).

    Article  Google Scholar 

  50. A. V. Sobolev and L. V. Dmitriev, “Primary melts of tholeiites of oceanic rifts (TOR): Evidence from studies of primitive glasses and melt inclusions in minerals,” Proceedings of the 28th International Geological Congress (Washington, DC, 1989), vol. 3, IGS147–148.

  51. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, et al., ”The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007).

    Article  Google Scholar 

  52. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” Geol. Soc., London, Sp. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  53. N. M. Sushchevskaya, E. V. Koptev-Dvornikov, N. A. Migdisova, D. M. Khvorov, A. A. Peive, S. G. Skolotnev, B. V. Belyatsky, and V. S. Kamenetsky, “Crystallization and geochemistry of tholeiitic magmas of the western termination of the Africa–Antarctic Ridge (Spiss Ridge) in the Bouvet triple junction point,” Ross. Zh. Nauk Zemle 1(3), 221–250 (1999).

    Google Scholar 

  54. N. M. Sushchevskaya, L. V. Dmitriev, and A. V. Sobolev, “Petrochemical criterion of classification of chilled glasses of oceanic tholeiites,” Dokl. Akad. Nauk SSSR 268 (6), 953–961 (1983).

    Google Scholar 

  55. N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatsky, and A. A. Peyve, “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic ocean,” Geochem. Int. 41 (1), 1–20 (2003).

    Google Scholar 

  56. T. Tanimoto, and Y. S. Zhang, “Cause of low velocity anomaly along the South Atlantic hotspots,” Geophys. Res. Lett. 19, 567–1570 (1992).

    Article  Google Scholar 

  57. G. Thompson, S. Humphris, and J.-G. Schilling, “Petrology and geochemistry of basaltic rocks from the Rio Grande Rise, South Atlantic, Deep Sea Drilling Project Leg 72, Hole 516F,” Init. Rept. Deep Sea Drill. Project 72, 457–466 (1983).

    Google Scholar 

  58. N. Ussami, C. A. M. Chaves, L. S. Marques, and M. Ernesto, “Origin of the Rio Grande Rise–Walvis Ridge reviewed integrating paleogeographic reconstruction, isotope geochemistry and flexural modeling,” Geol. Soc. London 369, 129–146 (2012).

    Google Scholar 

  59. Z. Wang and H. Becker “Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle,” Geochim. Cosmochim. Acta. 160, 209–226 (2015).

    Article  Google Scholar 

  60. A. P. Webber, S. Roberts, R. N. Taylor, and I. K. Pitcairn, “Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction,” Geology 41 (1), 87–90 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project nos. 15-95-2086 and 16-35-60123.

Dieter Garbe-Schönbergr, Ulrike Westernstroer (Kiel University) and Mario Thöner (GEOMAR) are sincerely thanked for their assistance with LA-ICP-MS and EMPA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Sushchevskaya or B. V. Belyatsky.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Shishkina, T.A., Portnyagin, M.V. et al. Long-Lasting Influence of the Discovery Plume on Tholeiitic Magmatism in the South Atlantic: Data on Basalts Recovered by Hole 513a, DSDP Leg 71. Geochem. Int. 57, 113–133 (2019). https://doi.org/10.1134/S0016702919020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919020083

Keywords:

Navigation