Skip to main content
Log in

Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We provide new insights into the prograde evolution of HP/LT metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg = 0.27–0.73) and chloritoid (overall X Mg = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve PT conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The PT paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agard P, Vitale-Brovarone A (2013) Thermal regime of continental subduction: the record from exhumed HP–LT terranes (New Caledonia, Oman, Corsica). Tectonophysics 601:206–215. doi:10.1016/j.tecto.2013.05.011

    Article  Google Scholar 

  • Agard P, Jolivet L, Goffé B (2001a) Tectonometamorphic evolution of the schistes lustrés complex: implications for the exhumation of HP and UHP rocks in the Western Alps. Bulletin de la Société Géologique de France 172(5):617–636

    Article  Google Scholar 

  • Agard P, Vidal O, Goffé B (2001b) Interlayer and si content of phengite in HP–LT carpholite-bearing metapelites. J Metamorph Geol 19(5):477–493

    Google Scholar 

  • Agard P, Labrousse L, Elvevold S, Lepvrier C (2005) Discovery of Paleozoic Fe–Mg carpholite in Motalafjella, Svalbard Caledonides: a milestone for subduction-zone gradients. Geology 33(10):761–764

    Article  Google Scholar 

  • Angiboust S, Glodny J, Oncken O, Chopin C (2014) In search of transient subduction interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps). Lithos 205:298–321

  • Auzanneau E, Schmidt MW, Vielzeuf D, Connolly JAD (2010) Titanium in phengite: a geobarometer for high temperature eclogites. Contrib Miner Petrol 159(1):1–24. doi:10.1007/s00410-009-0412-7

    Article  Google Scholar 

  • Azañon JM, Goffé B (1997) Ferro- and magnesiocarpholite assemblages as record of high-P, low-T metamorphism in the Central Alpujarrides, Betic Cordillera (SE Spain). Eur J Mineral 9:1035–1051

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–Ca–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2-H2O-Co2. J Petrol 29(2):445–522

    Article  Google Scholar 

  • Bertoldi C, Dachs E, Theye T (2006) Calorimetric data for naturally occurring magnesiocarpholite and ferrocarpholite. Am Mineral 91(2–3):441–445. doi:10.2138/am.2006.1958

    Article  Google Scholar 

  • Black PM (1975) Mineralogy of New Caledonian metamorphic rocks. 4. Sheet silicates from Ouegoa district. Contrib Miner Petrol 49(4):269–284. doi:10.1007/bf00376180

    Article  Google Scholar 

  • Bousquet R, Oberhänsli R, Goffé B, Jolivet L, Vidal O (1998) High pressure–low temperature metamorphism and deformation in the Bündnerschiefer of the Engadine window: implications for the regional evolution of the eastern central Alps. J Metamorph Geol 16:657–674

    Article  Google Scholar 

  • Bousquet R, Oberhänsli R, Goffé B, Wiederkehr M, Koller F, Schmid SM, Schuster R, Engi M, Berger A, Martinotti G (2008) Metamorphism of metasediments in the scale of an orogen: a key to the Tertiary geodynamic evolution of the Alps. In: Siegesmund S, Froitzheim N (eds) Tectonic aspect of the Alpine-Dinaride-Carpathian system, vol 298. Geological Society Special Publication of London, London, pp 393–411

    Google Scholar 

  • Candan O, Çetinkaplan M, Oberhänsli R, Rimmelé G, Akal C (2005) Alpine high-P/low-T metamorphism of the Afyon Zone and implications for the metamorphic evolution of Western Anatolia, Turkey. Lithos 84(1–2):102–124. doi:10.1016/j.lithos.2005.02.005

    Article  Google Scholar 

  • Chopin C, Schreyer W (1983) Magnesiocarpholite and magnesiochloritoid: two index minerals of pelitic blueschits and their preliminary phase relations in tne system MgO–Al2O3–SiO2–H2O. Am J Sci 283-a:72–96

    Google Scholar 

  • de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95(7):1006–1016. doi:10.2138/am.2010.3354

    Article  Google Scholar 

  • de Roever EWF (1977) Chloritoid-bearing metapelites associated with glaucophane rocks in W Crete. Contrib Miner Petrol 60(3):317–319

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating fe-3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51(361):431–435. doi:10.1180/minmag.1987.051.361.10

    Article  Google Scholar 

  • Dubacq B (2008) Thermodynamique des phyllosilicates de basse température: de l’approche macroscopique à la simulation atomistique. Doctoral. Joseph Fourier de Grenoble

  • Dubacq B, Vidal O, De Andrade V (2010) Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. Contrib Miner Petrol 159(2):159–174. doi:10.1007/s00410-009-0421-6

    Article  Google Scholar 

  • Duesterhoeft E, de Capitani C (2013) Theriak_D: an add-on to implement equilibrium computations in geodynamic models. Geochem Geophys Geosyst 14(11):4962–4967. doi:10.1002/ggge.20286

    Article  Google Scholar 

  • Ellis DJ, Green DH (1979) Experimental-study of the effect of ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Miner Petrol 71(1):13–22. doi:10.1007/bf00371878

    Article  Google Scholar 

  • El-Shazly AK (1995) Petrology of Fe–Mg-carpholite-bearing metasediments from NE Oman. J Metamorph Geol 13:379–396

    Article  Google Scholar 

  • Engi M (1992) Thermodynamic data for minerals: a critical assessment. In: Price GD, Ross NL (eds) The stability of minerals, vol 3. Chapman & Hall, London, pp 267–328

    Chapter  Google Scholar 

  • Escuder-Viruete J, Perez-Estaun A, Gabites J, Suarez-Rodriguez A (2011) Structural development of a high-pressure collisional accretionary wedge: the Samana complex, Northern Hispaniola. J Struct Geol 33(5):928–950. doi:10.1016/j.jsg.2011.02.006

    Article  Google Scholar 

  • Evans TP (2004) A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: implications for isopleth thermobarometry. J Metamorph Geol 22(6):547–557

    Article  Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of partitioning of Fe and Mg between biotite and garnet. Contrib Miner Petrol 66(2):113–117. doi:10.1007/bf00372150

    Article  Google Scholar 

  • Fransolet AM, Schreyer W (1984) Sudoite, di/trioctahedral chlorite—a stable low-temperature phase in the system MgO–Al2O3–SiO2–H2O. Contrib Miner Petrol 86(4):409–417. doi:10.1007/bf01187144

    Article  Google Scholar 

  • Gaidies F, de Capitani C, Abart R (2008) Theria_G: a software program to numerically model prograde garnet growth. Contrib Miner Petrol 155(5):657–671. doi:10.1007/s00410-007-0263-z

    Article  Google Scholar 

  • Goffé B (1982) Définition du faciès à Fe, Mg-carpholite-chloritoide, un marqueur du métamorphisme de HP-BT dans les métasédiments alumineux. Paris

  • Goffé B (1984) Le facies à carpholite-chloritoide dans la couverture briançonnaise des alpes ligures: un témoin de l’histoire tectono-metamorphique régionale. Memorie della Societa Geologica Italiana 28:461–479

    Google Scholar 

  • Goffé B, Velde B (1984) Contrasted metamorphic evolution in thrusted cover units of the Briançonnais zone (French Alps): a model for the conservation of HP-BT metamorphic mineral assemblages. Earth Planet Sci Lett 68:351–360

    Article  Google Scholar 

  • Goffé B, Goffé-Urbano G, Saliot P (1973) Sur la présence d’une variété magnésienne de la ferrocarpholite en vanoise (Alpes Françaises): sa signification probable dans le métamorphisme alpin. Comptes Rendus de l’Académie des Sciences Paris 277:1965–1968

    Google Scholar 

  • Goffé B, Michard A, Kienast J-R, Le Mer O (1988) A case study of obduction-related high pressure, low temperature metamorphism in the upper crustal nappes, Arabian continental margin, Oman: P–T paths and kinematic interpretation. Tectonophysics 151:363–386

    Article  Google Scholar 

  • Henry C, Burkhard M, Goffé B (1996) Evolution of synmetamorphic veins and their wall rocks through a western alps transect: no evidence for a large-scale fluid flow. Stable isotope, major- and trace-element systematics. Chem Geol 127:81–109

    Article  Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16(3):309–343

    Article  Google Scholar 

  • Hunziker P (2003) The stability of tri-octaedrial Fe2+–Mg–Al chlorite. A combined experimental and theoritical study. Doctoral. Universität Basel

  • Koch-Müller M, Hofmeister AM, Fei YW, Liu ZX (2002) High-pressure IR-spectra and the thermodynamic properties of chloritoid. Am Mineral 87(5–6):609–622

    Google Scholar 

  • Konrad-Schmolke M, Handy MR, Babist J, O’Brien PJ (2005) Thermodynamic modelling of diffusion-controlled garnet growth. Contrib Miner Petrol 149(2):181

    Article  Google Scholar 

  • Koons PO, Thompson AB (1985) No-mafic rocks in the greenschist, blueschist and eclogite facies. Chem Geol 50:3–30

    Article  Google Scholar 

  • Lanari P, Wagner T, Vidal O (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contrib Mineral Petrol 167(2). doi:10.1007/s00410-014-0968-8

  • Le Bayon R, De Capitani C, Frey M (2006) Modelling phase–assemblage diagrams for magnesian metapelites in the system K2O–FeO–MgO–Al2O3–SiO2–H2O: geodynamic consequences for the Monte Rosa nappe, Western Alps. Contrib Miner Petrol 151:395–412

    Article  Google Scholar 

  • Marmo BA, Clarke GL, Powell R (2002) Fractionation of bulk rock composition due to porphyroblast growth: effects on eclogite facies mineral equilibria, Pam Peninsula, New Caledonia. J Metamorph Geol 20(1):151–165

    Article  Google Scholar 

  • McDade P, Harley SL (2001) A petrogenetic grid for aluminous granulite facies metapelites in the KFMASH system. J Metamorph Geol 19(1):45–60

    Article  Google Scholar 

  • Moynihan DP, Pattison DRM (2013) An automated method for the calculation of P–T paths from garnet zoning, with application to metapelitic schist from the Kootenay Arc, British Columbia, Canada. J Metamorph Geol 31(5):525–548. doi:10.1111/jmg.12032

    Article  Google Scholar 

  • Oberhänsli R (2013) High-pressure-low-temperature evolution in the Indus-Tsangpo suture along the Kohistan Arc (Kaghan Valley, NE Pakistan). Episodes 36(2):87–93

    Google Scholar 

  • Oberhänsli R, Goffé B, Bousquet R (1995) Record of a HP–LT metamorphic evolution in the valais zone: Geodynamic implications. In: Lombardo B (ed) Studies on metamorphic rocks and minerals of the western Alps a volume in memory of Ugo Pognante, vol 13(2). Bollettino del Museo Regionale di Scienze Naturali (suppl.), Torino, pp 221–239

  • Oberhänsli R, Partzsch J, Candan O, Cetinkaplan M (2001) First occurrence of Fe–Mg-carpholite documenting a high-pressure metamorphism in metasediments of the Lycian Nappes, SW Turkey. Int J Earth Sci 89(4):867–873. doi:10.1007/s005310000103

    Article  Google Scholar 

  • Okay AI, Tansel I, Tüysüz O (2001) Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey. Geol Mag 138(2):117–142

    Article  Google Scholar 

  • Parra T, Vidal O, Agard P (2002) A thermodynamic model for Fe–Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. Contrib Miner Petrol 143:706–732

    Article  Google Scholar 

  • Plunder A, Agard P, Dubacq B, Chopin C, Bellanger M (2012) How continuous and precise is the record of P–T paths? Insights from combined thermobarometry and thermodynamic modelling into subduction dynamics (Schistes Lustre’s, W. Alps). J Metamorph Geol 30(3):323–346. doi:10.1111/j.1525-1314.2011.00969.x

    Article  Google Scholar 

  • Plunder A, Agard P, Chopin C, Okay AI (2013) Geodynamics of the Tavsanli zone, western Turkey: Insights into subduction/obduction processes. Tectonophysics 608:884–903. doi:10.1016/j.tecto.2013.07.028

    Article  Google Scholar 

  • Plunder A, Agard P, Chopin C, Pourteau A, Okay AI (submitted) Accretion, underplating and exhumation along a subduction interface: from subduction initiation to continental subduction (Tavşanlı zone, W. Turkey). Lithos

  • Pourteau A, Candan O, Oberhänsli R (2010) High-pressure metasediments in central Turkey: constraints on the Neotethyan closure history. Tectonics 29(TC5004). doi:10.1029/2009TC002650

  • Pourteau A, Sudo M, Candan O, Lanari P, Vidal O, Oberhänsli R (2013) Neotethys closure history of anatolia: insight from 40Ar–39Ar geochronology and P–T estimation in high-pressure metasediments. J Metamorph Geol (in press). doi: 10.1111/jmg.12034

  • Rimmelé G, Jolivet L, Oberhänsli R, Goffé B (2003a) Deformation history of the high-pressure Lycian Nappes and implications for tectonic evolution of SW Turkey. Tectonics 22(2). doi:10.1029/2001TC901041

  • Rimmelé G, Oberhänsli R, Goffé B, Jolivet L, Candan O, Cetinkaplan M (2003b) First evidence of high-pressure metamorphism in the “Cover Series” of the southern Menderes Massif. Tectonic and metamorphic implications for the evolution of sw Turkey. Lithos 71(1):19–46

    Article  Google Scholar 

  • Rimmelé G, Parra T, Goffé B, Oberhänsli R, Jolivet L, Candan O (2005) Exhumation paths of high-pressure-low-temperature metamorphic rocks from the Lycian Nappes and the Menderes Massif (SW Turkey): a multi-equilibrium approach. J Petrol 46(3):641–669. doi:10.1093/petrology/egh092

    Article  Google Scholar 

  • Rimmelé G, Oberhänsli R, Candan O, Goffé B, Jolivet L (2006) The wide distribution of HP–LT rocks in the Lycian Belt (western Turkey): implications for accretionary wedge geometry. In: Robertson AHF, Mountrakis D (eds) Tectonic development of the eastern mediterranean region, vol 260. Geological Society, Special Publications, London, pp 447–466

    Google Scholar 

  • Seaton NCA, Whitney DL, Teyssier C, Toraman E, Heizler MT (2009) Recrystallization of high-pressure marble (Sivrihisar, Turkey). Tectonophysics 479(3–4):241–253. doi:10.1016/j.tecto.2009.08.015

    Article  Google Scholar 

  • Seaton NCA, Teyssier C, Whitney DL, Heizler MT (2014) Quartz and calcite microfabric transitions in a pressure and temperature gradient, Sivrihisar, Turkey. Geodin Acta 26(3–4):191–206. doi:10.1080/09853111.2013.858952

    Google Scholar 

  • Sengör AMC, Yilmaz Y (1981) Tethyan evolution of turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Article  Google Scholar 

  • Song S, Zhang L, Niu Y, Wei C, Liou J, Shu G (2007) Eclogite and carpholite-bearing metasedimentary rocks in the north Qilian suture zone, nw china: IMPLICATIONS for early palaeozoic cold oceanic subduction and water transport into mantle. J Metamorph Geol 25(5):547–563. doi:10.1111/jmg.2007.25.issue-5

    Article  Google Scholar 

  • Spear FS (1991) On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. J Metamorph Geol 9(4):379–388. doi:10.1111/j.1525-1314.1991.tb00533.x

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure–temperature-time paths. Mineralogical Society of America, Washington

    Google Scholar 

  • Theye T, Seidel E, Vidal O (1992) Carpholite, sudoite and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece. Eur J Mineral 4:487–507

    Article  Google Scholar 

  • Tinkham DK, Ghent ED (2005) Estimating P–T conditions of garnet growth with isochemical phase-diagram sections and the problem of effective bulk-composition. Can Mineral 43(1):35–50

    Article  Google Scholar 

  • Trotet F, Goffé B, Vidal O, Jolivet L (2006) Evidence of retrograde Mg-carpholite in the Phyllite-Quartzite nappe of Peloponnese from thermobarometric modelisation-geodynamic implications. Geodyn Acta 19(5):323–343

    Article  Google Scholar 

  • Verlaguet A, Goffé B, Brunet F, Poinssot C, Vidal O, Findling N, Menut D (2011) Metamorphic veining and mass transfer in a chemically closed system: a case study in Alpine metabauxites (western Vanoise). J Metamorph Geol 29(3):275–300. doi:10.1111/j.1525-1314.2010.00918.x

    Article  Google Scholar 

  • Vidal O, Parra T (2000) Exhumation paths of high pressure metapelites obtained from local equilibria for chlorite–phengite assemblages. Geol J 35(3–4):139–161

    Article  Google Scholar 

  • Vidal O, Theye T (1996) Comment on “petrology of fe-mg-carpholite-bearing metasediments from ne oman”. J Metamorph Geol 14:381–386

    Article  Google Scholar 

  • Vidal O, Goffé B, Theye T (1992) Experimental study of the stability of sudoite and magnesiocarpholite and calculation of a new petrogenetic grid for the system FeO–MgO–Al2O3–SiO2–H2O. J Metamorph Geol 10:603–614

    Article  Google Scholar 

  • Vidal O, Theye T, Chopin C (1994) Experimental study of chloritoid stability at high pressure and various fo2 conditions. Contrib Miner Petrol 118:256–270

    Article  Google Scholar 

  • Vidal O, Goffé B, Bousquet R, Parra T (1999) Calibration and testing of an empirical chloritoid–chlorite exchange thermometer and thermodynamic data for daphnite. J Metamorph Geol 17(1):25–39

    Article  Google Scholar 

  • Vidal O, Parra T, Trotet F (2001) A thermodynamic model for fe-mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100–600°c, 1–25 kbar range. Am J Sci 301:557–592

    Article  Google Scholar 

  • Vidal O, Parra T, Vieillard P (2005) Thermodynamic properties of the tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation. Am Mineral 90(2–3):347–358. doi:10.2138/am.2005.1554

    Article  Google Scholar 

  • Vidal O, De Andrade V, Lewin E, Munoz M, Parra T, Pascarelli S (2006) P–T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the sambagawa metamorphic belt (Japan). J Metamorph Geol 24(7):669–683

    Article  Google Scholar 

  • Viswanathan K, Seidel E (1979) Crystal-chemistry of Fe–Mg-carpholites. Contrib Miner Petrol 70(1):41–47. doi:10.1007/bf00371870

    Article  Google Scholar 

  • Wei CJ, Powell R (2003) Phase relations in high-pressure metapelites in the system KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) with application to natural rocks. Contrib Miner Petrol 301:301–315

    Article  Google Scholar 

  • Wei C, Powell R (2004) Calculated phase relations in high-pressure metapelites in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O). J Petrol 45(1):183–202

    Article  Google Scholar 

  • Wei CJ, Powell R, Clarke GL (2004) Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. J Metamorph Geol 22:495–508

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187. doi:10.2138/am.2010.3371

    Article  Google Scholar 

  • Whitney DL, Teyssier C, Toraman E, Seaton NCA, Fayon AK (2011) Metamorphic and tectonic evolution of a structurally continuous blueschist-to-Barrovian terrane, Sivrihisar Massif, Turkey. J Metamorph Geol 29(2):193–212. doi:10.1111/j.1525-1314.2010.00915.x

    Article  Google Scholar 

  • Yamato P, Agard P, Burov E, Le Pourhiet L, Jolivet L, Tiberi C (2007) Burial and exhumation in a subduction wedge: mutual constraints from thermomechanical modeling and natural P–T–T data (Schistes Lustres, western Alps). J Geophys Res Solid Earth 112(B7): B07410. doi:10.1029/2006jb004441

  • Zheng YF, Zhang LF, McClelland WC, Cuthbert S (2012) Processes in continental collision zones: preface. Lithos 136:1–9. doi:10.1016/j.lithos.2011.11.020

    Article  Google Scholar 

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (OB80/34) and the Faculty of Mathematics and Natural Sciences at the University of Potsdam are kindly acknowledged for financial support. Amaury Pourteau warmly thanks Pierre Lanari and Benoit Dubacq for fruitful discussions, as well as Christian Chopin and Thomas Theye for comments on an early version of the manuscript. Thanks are also due to two anonymous peers for their positive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Pourteau.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourteau, A., Bousquet, R., Vidal, O. et al. Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling. Contrib Mineral Petrol 168, 1090 (2014). https://doi.org/10.1007/s00410-014-1090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1090-7

Keywords

Navigation