Skip to main content

Advertisement

Log in

Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A sedimentological and geochemical study was carried out to explore the origin of arsenic contamination in sediments in Nawalparasi district, in the western Terai of Nepal. The investigation tools include major, trace and rare earth element analyses of core sediments, as well as 14C datings, and O, C isotopic analyses on mollusk shells. The results show that black schists from the Lesser Himalaya highly contributed to the detrital input in Parasi during the Pleistocene–Holocene transition because of focused erosion related to rapid uplift and high rainfall along the Main Central Thrust zone. In addition, aquifer silts, sands, and most of the brown clays underwent a certain degree of chemical weathering and physical reworking, and show possible inputs from the Siwaliks during the Late Holocene. A possible correlation between late Quaternary climate regimes and the concentration of arsenic in sediments is suspected, with arsenic preferentially concentrated during the drier periods of the last 25 kyr BP. The process of arsenic eluviations in sandy and silty sediments can explain the lower arsenic concentrations in sediments during humid periods. During the drier periods, seasonal precipitation was smaller and temperature was lower, leading to wet (less evaporative) soils in swampy environments. This environment favoured the development of aquatic plants and bacteria growing within in the moist land areas, enhancing the strong weathering of initially suspended load particles (micas and clays), which were preferentially deposited in quiet hydraulic environments. These sorting and weathering processes presumably allowed the arsenic to be concentrated in the finest sediment fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acharyya SK, Lahiri S, Raymahashay BC, Bhowmik A (2000) Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environ Geol 39:1127–1137

    Article  Google Scholar 

  • Amidon WH, Burbank DW et al (2005) U-Pb Zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet Sci Lett 235:244–260

    Article  Google Scholar 

  • Ayres M, Harris N (1997) REE and Nd-Isotope fractionation during crustal anatexis: constraints from Himalayan leucogranites. Chem Geol 139:249–269

    Article  Google Scholar 

  • Bryson RA, Swain AM (1981) Holocene variations of monsoon rainfall in Rajasthan. Quat Res 16:125–145

    Article  Google Scholar 

  • Charlet L, Polya D (2006) Arsenic in shallow reducing groundwaters in southern Asia: an environmental health disaster. Elements 2:91–96

    Article  Google Scholar 

  • Chauvel C, Bureau S, Poggi C (2011) Comprehensive chemical and isotopic analyses of basalt and sediment standards. Geost Geoanal Res 35:125–143

    Article  Google Scholar 

  • Colchen M, Le Fort P, Pêcher A (1986) Recherches géologiques dans l’Himalaya du Népal. Annapurna, Manaslu, Ganesh. Paris: Ed. du Centre national de la recherche scientifique, p 136

  • Cotten J, Le Deza A, Baub M, Caroff RC, Maury RC, Dulski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chem Geol 119:115–138

    Article  Google Scholar 

  • Denniston RF, González LA, Asmerom Y, Sharma RH, Reagan MK (2000) Speleothem evidence for changes in Indian summer monsoon precipitation over the last ~2300 years. Quat Res 53:196–202

    Article  Google Scholar 

  • Dettman DL, Reische AK, Lohamann CK (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalve (Unionidae). Geochim Cosmochim Acta 63:1049–1057

    Article  Google Scholar 

  • Finkel RC, Owen LA, Barnard PL, Cafee MW (2003) Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya. Geology 31:561–564

    Article  Google Scholar 

  • Fralick PW, Kronberg BI (1997) Geochemical distribution of clastic sedimentary rock source. Sediment Geol 113:111–124

    Article  Google Scholar 

  • France-Lanord C, Derry L, Michard A (1993) Evolution of the Himalaya since Miocene time: isotopic and sedimentologic evidence from the Bengal fan. In: Treloar PJ, Searle M (eds) Himalayan tectonics. Geol Soc Spe Pub, London 74:445–465

  • Gajurel AP, France-Lanord C, Huyghe P, Guilmette C, Gurung D (2006) C and O Isotope compositions of modern fresh-water mollusc shells and river waters from Himalaya and Ganga plain. Chem Geol 233:156–183

    Article  Google Scholar 

  • Galy A, France-Lanord C (2001) Higher Erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology 29:23–26

    Article  Google Scholar 

  • Galy A, France-Lanord C, Derry LA (1999) The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochim Cosmochim Acta 63:1905–1925

    Article  Google Scholar 

  • Garzanti E, Vezzoli G, Ando S, France-Lanord C, Singh SK, Foster G (2004) Sand Petrology and focused erosion in collision orogens: the Brahmaputra case. Earth Planet Sci Lett 220:157–174

    Article  Google Scholar 

  • Garzanti E, Vezzoli G, Ando S, Lavé J, Attal M, France-Lanord C, DeCelles PG (2007) Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya. Earth Planet Sci Lett 258:500–515

    Article  Google Scholar 

  • Garçon M, Chauvel C, France-Lanord C (2013) Sedimentary processes decouple Nd and Hf isotopes in river sediments on continents. Geochim Cosmochim Acta 121:177–195

    Article  Google Scholar 

  • Gibling MR et al (2005) Discontinuity-bounded alluvial sequences of the southern Gangetic Plains, India: aggradation and degradation in response to monsoonal strength. J Sedim Res 75:369–385

    Article  Google Scholar 

  • Gourlan A, Meynadier L, Allègre CJ, Tapponnier P, Birck JL, Joron JL (2010) Northern Hemisphere climate control of the Bengali rivers discharge during the past 4 Ma. Quat Res 29:2484–2498

    Article  Google Scholar 

  • Guillot S, Charlet L (2007) Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. J Environ Sci Health Part A42:1785–1794

    Article  Google Scholar 

  • Guillot S, Le Fort P (1995) Geochemical constraints on the bimodal origin of high Himalayan leucogranites. Lithos 35:221–234

    Article  Google Scholar 

  • Guillot S, LeFort P, Pêcher A, Barman MR, Aprahamian J (1995) Contact metamorphism and depth of emplacement of the manaslu granite (Central Nepal). Implications for Himalayan orogenesis. Tectonophysics 241:99–119

    Article  Google Scholar 

  • Guillot S (1999) An overview of the metamorphic evolution of central Nepal. In: Upreti BN, Le Fort PJ (eds) “Geology of Nepal”. J Asian Earth Sci 17:713–725

  • Gurung JK, Ishiga H, Khadka M (2005) Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environ Geol 49:98–113

    Article  Google Scholar 

  • Harper JT, Humphery NF (2003) High altitude Himalayan climate inferred from glacial ice flux. Geophy Res Lett. doi:10.1029/2003GLO17329

    Google Scholar 

  • Harris N, Inger S (1992) Trace element modelling of pelite-derived granites. Contrib Miner Petrol 110:46–56

    Article  Google Scholar 

  • Hayashi T, Tanimura Kuwahara Y, Ohno M, Mampuku M, Fujii R, Sakai H, Yamanaka T, Maki T, Uchida M, Yahagi W, Sakai H (2008) Ecological variations in diatom assemblages in the Paleo-Kathmandu Lake linked with global and Indian monsoon climate changes for the last 600,000 years. Quat Res 72:377–387

    Article  Google Scholar 

  • Huyghe P, Mugnier JL, Gajurel AP, Delcaillau B (2005) Tectonic and climatic control of the changes in the sedimentary record of the Karnali River section (Siwaliks of western Nepal). Isl Arcs 14:311–325. doi:10.1111/j.1440-1738.2005.00500.x

    Article  Google Scholar 

  • Ishiga H, Dozen K, Yamazaki CFA, Islam MB, Rohman MH, Sattar MA, Yamamoto H, Itoh K (2000) Geological constraints on arsenic contamination of groundwater in Bangladesh. In: Proceedings of the 5th forum of Arsenic in Asia, Nov 2000 Asia Arsenic Network (AAN), Yokohama Japan, pp 53–62

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke A, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Jennings AE, Kaplan, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Ruhland K, Mol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic 0–180 W. Quat Sci Rev 23:529–560. doi:10.1016/j.quascirev.2003.09.007

    Article  Google Scholar 

  • Lavé J, Avouac JP (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophy Res 106:26561–26591. doi:10.1029/2001JB000359

    Article  Google Scholar 

  • Lupker M, France-Lanord C, Galy V, Lavé J, Gaillardet J, Gajurel AP, Guilmette C, Rahman M, Singh SK, Sinha R (2012) Predominant floodplain over mountain weathering of Himalayan sediments Ganga basin. Geochim Cosmochim Acta 84:410–432

    Article  Google Scholar 

  • Lécuyer C, Reynard B, Martineau F (2004) Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chem Geol 213:293–305

    Article  Google Scholar 

  • McArthur JM, Ravenscroft P, Safiullah S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Res Res 37:109–117

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • McDonough W, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDennial DK, Hanson GN (1993) Geochemical approaches to sedimentation provenance and tectonics. Geol Soc Amer Bull 284:21–40

    Google Scholar 

  • Meharg AA, Scrimgeour C, Hossain SA, Fuller K, Cruickshank K, Williams PN, Kinniburgh DG (2006) Codeposition of organic carbon and arsenic in Bengal delta aquifers. Environ Sci Technol 40:4928–4935

    Article  Google Scholar 

  • Milliman JD, Sivitsli JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Mugnier JL, Leturmy P, Huyghe P, Chalaron E (1999) The Siwaliks of Western Nepal: mechanism of the Thrust Wedge. In: Le Fort P, Upreti BN (eds) Geology of the Nepal Himalaya: recent advances. J Asia Earth Sci 17:643–657

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady-state weathering and petrogenesis of siliclastic sands and muds. J Geol 105:173–191

    Article  Google Scholar 

  • Nath B, Chakraborty S, Burnol A, Stüben D, Chatterjee D, Charlet L (2009) Mobility of arsenic in the subsurface environment: an integrated hydrogeochemical study and sorption model of the sandy aquifer materials. J Hydrol 364:236–248

    Article  Google Scholar 

  • Paudel LP (2012) Carbonaceous schists of the Main Central Thrust zone as a source of graphite: a case study from the Kali Gandaki valley, west Nepal. Bull Dept Geol Tribhuvan Univ Kathmandu Nepal 14:9–14

    Google Scholar 

  • Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2003) Arsenic and selenium. Treatise on geochemistry. In: Lollar BS, Heinrich D. Holland, Karl K (eds) Turekian9. doi:10.1016/B0-08-043751-6/09047-2:17-66

  • Pokhrel D, Bhandari BS, Viraraghavan T (2009) Arsenic contamination of groundwater in the Terai region of Nepal: an overview of healths concerns and treatment options. Environ Geol 35:157–161

    Google Scholar 

  • Potter PE, Maynard JB, Depteris P (2005) Mud and mudstones, introduction and overview. Springer-verlag, Berlin, p 218

    Google Scholar 

  • Rashid SA (2002) Geochemical characteristics of Mesoproterozoic clastic sedimentary rocks from the Chakrata Formation, Lesser Himalaya; implications for crustal evolution and weathering history in the Himalaya. J Asian Earth Sci 21:283–293

    Article  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. Taylor and Francis group, London 774

    Book  Google Scholar 

  • Reichart GJ, Lourens LJ, Zachariasse WJ (1998) Temporal variability in the northern Arabian Sea Oxygen Minimum Zone OMZ during the last 225,000 years. Paleoceanography 13:607–621

    Article  Google Scholar 

  • Shah BA (2008) Role of Quaternary stratigraphy on arsenic-contaminated groundwater from parts of Middle Ganga Plain, UP-Bihar, India. Environ Geol 53:1553–1561

    Article  Google Scholar 

  • Sharma S, Joachimski M, Sharma ML, Tobschal HJ, Singh IB, Sharma C, Chaulan MS, Morgenroth G (2004) Late glacial and Holocene environmental changes in Ganga plain, Northern India. Quat Sci Rev 23:145–159

    Article  Google Scholar 

  • Shukla U, Bora K (2009) Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain, India. Int Earth Sci 98:443–459

    Article  Google Scholar 

  • Singh P (2009) Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary process. Chem Geol 266:2516264

    Article  Google Scholar 

  • Sinha R, Friend KH (1994) River systems and their flux, Indo-Gangetic plains, Norther Bihar, India. Sedimentology 41:825–845

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Tardy Y, Nahon D (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe3+ -kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. Am J Sci 285:865–903

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Oxford Blackwell, London 312

    Google Scholar 

  • Tripathi JK, Ghazanfari P, Rajamani V, Tandon SK (2007) Geochemistry of sediments of the Ganges alluvial plains: evidence of large-scale sediment recycling. Quat Int 159:119–130

    Article  Google Scholar 

  • Tsukamoto S, Asahi K, Watanabe T, Rink WJ (2002) Timing of past glaciations in Kanchenjunga Himal, Nepal by optically stimulated luminescence dating of tills. Quat Int 97–98:57–67

    Article  Google Scholar 

  • Tzedakis PC, Andrieu V, De Beaulieu JL, de Crowhurst S, Follieri M, Hooghiemstra H, Magri D, Reille M, Sadori L, Shackleton NJ, Wijmstra TA (1997) Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet Sci Lett 150:171–176

    Article  Google Scholar 

  • UNDP and Nepal HMGO (1989) Shallow groundwater investigation in Terai, Nawalparasi district West. Technical report 5 p 21

  • Upreti BN (1999) An overview of the stratigraphy and tectonics of the Nepal Himalaya. J Asian Earth Sci 17:577–606

  • van Geen A, Radloff K, Aziz Z, Cheng Z, Huq MR, Ahmed KM, Weinman B, Goodbred S, Jung HB, Zheng Y, Berg M, Trang PTK, Charlet L, Metral J, Tisserand D, Guillot S, Chakraborty P, Gajurel AP, Upreti BN (2008) Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal. Appl Geochem 23:3244–3251

    Article  Google Scholar 

  • Zhao M, Beveridge NAS, Shackleton NJ, Sarnthein M, Eglinton G (1995) Sediment core ODP 658, interpreted sea surface temperature, Eastern Tropical Atlantic. Paleoceanography 10:661–675. doi:10.1029/94PA03354

    Article  Google Scholar 

Download references

Acknowledgments

The research project was supported by NSF, the CNRS INSU EC2CO and Labex OSUG20@20 programs. We acknowledge James W. LaMoreaux and the two anonymous reviewers for fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Guillot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillot, S., Garçon, M., Weinman, B. et al. Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal). Environ Earth Sci 74, 2571–2593 (2015). https://doi.org/10.1007/s12665-015-4277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4277-y

Keywords

Navigation