Skip to main content
Log in

Quantifying the Partition Between Seismic and Aseismic Deformation Along Creeping and Locked Sections of the North Anatolian Fault, Turkey

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Shallow aseismic creep is a key deformation component along plate boundaries that contributes to the energy budget during the seismic cycle. Several major active continental faults show spatial alternation of creeping and locked sections. The present study focuses on the evaluation of the aseismic part of the total displacement along the North Anatolian Fault in Turkey. Detailed microstructural analyses of finite strain were performed using various methods, based on change of length or angle, on six representative samples collected over 32 outcrops along locked and creeping sections of the fault. Chemical analyses were used to map mineral composition of fault rocks and to calculate relative volume changes associated with creep. The relationship between finite strain and volume change allowed quantifying the evolution of the penetrative pressure solution cleavage mechanism of creep. In volcanic and analogous creeping rocks, finite strain measurements revealed two spatial scales of strain that correspond to the alternation of two types of shear zones, with cleavages either oblique or sub-parallel to the fault displacement. Using geodetic and geologic data, cumulative aseismic displacement was calculated in the range 9–49% of the total 80-km displacement in the creping sections and was negligible in locked sections. The large uncertainty in the kilometer-width creeping sections was related to the difficulty of quantifying the high strain values associated with high shear displacement and for which measurement uncertainties are large. A promising way to improve such quantification would be to develop reliable statistical analysis of cleavage orientation in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adiyaman, Ö., Chorowicz, J., Nicolas Arnaud, O., Niyazi Gündogdu, M., & Gourgaud, A. (2001). Late Cenozoic tectonics and volcanism along the North Anatolian Fault: new structural and geochemical data. Tectonophysics, 338(2), 135–165.

    Article  Google Scholar 

  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez, H. Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M. F., & Yurtsever, A, et al. (2016). Turkey Geology Map General Directorate of Mineral Research and Exploration Publications. Ankara, Turkey.

  • Andreani, M., Boullier, A. M., & Gratier, J. P. (2005). Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge. Journal of Structural Geology, 27, 2256–2267.

    Article  Google Scholar 

  • Armijo, R., Meyer, B., Hubert, A., & Barka, A. (1999). Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics. Geology, 27, 267–270. https://doi.org/10.1130/0091-7613.

    Article  Google Scholar 

  • Armijo, R., Meyer, B., Hubert, A., & Barka, A. (2000). Westward propagation of North Anatolian fault into the northern Aegean: Timing and kinematics: Comment and reply. Geology, 28(2), 188. https://doi.org/10.1130/0091-7613.

    Article  Google Scholar 

  • Ashby, M., & Verrall, R. (1973). Diffusion-accommodated flow and superplasticity. Acta Metallurgica, 11(2), 149–163.

    Article  Google Scholar 

  • Bilham, R., Ozener, H., Mencin, D., Dogru, A., Ergintav, S., Çakir, Z., et al. (2016). Surface creep on the North Anatolian Fault at Ismetpasa, Turkey, 1944–2016. Journal of Geophysical Research Solid Earth, 121, 7409–7431.

    Article  Google Scholar 

  • Bos, B., & Spiers, C. J. (2000). Effect of phyllosilicates on fluid-assisted healing of gouge-bearing faults. Earth and Planetary Science Letters, 184(1), 199–210. https://doi.org/10.1016/S0012-821X(00)00304-6.

    Article  Google Scholar 

  • Bos, B., & Spiers, C. J. (2002). Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles. Journal of Geophysical Research. https://doi.org/10.1029/2001jb000301.

    Google Scholar 

  • Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112–134.

    Article  Google Scholar 

  • Çakir, Z., Akoglu, A. M., Belabbes, S., Ergintav, S., & Meghraoui, M. (2005). Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR. Earth and Planetary Science Letters, 238, 225–234. https://doi.org/10.1016/j.epsl.2005.06.044.

    Article  Google Scholar 

  • Çakir, Z., Ergintav, S., Akoğlu, A. M., Çakmak, R., Tatar, O., & Meghraoui, M. (2014). InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation. Journal of Geophysical Research Solid Earth, 119, 7934–7943. https://doi.org/10.1002/2014JB011360.

    Article  Google Scholar 

  • Carpenter, B. M., Ikari, M. J., & Marone, C. (2016). Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. Journal of Geophysical Research Solid Earth, 121, 1183–1201. https://doi.org/10.1002/2015JB012136.

    Article  Google Scholar 

  • Cetin, E., Çakir, Z., Meghraoui, M., Ergintav, S., & Akoglu, A. M. (2014). Extent and distribution of aseismic slip on the Ismetpa?a segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry Geophysics Geosystems, 15, 2883–2894. https://doi.org/10.1002/2014GC005307.

    Article  Google Scholar 

  • Chen, K. H., & Bürgmann, R. (2017). Creeping faults: Good news, bad news? Reviews of Geophysics, 55(2), 282–286. https://doi.org/10.1002/2017RG000565.

    Article  Google Scholar 

  • Collettini, C., Niemeijer, A., Viti, C., & Marone, C. (2009). Fault zone fabric and fault weakness. Nature, 462(7275), 907–910. https://doi.org/10.1038/nature08585.

    Article  Google Scholar 

  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Active Fault Map of Turkey with an Explanatory Text. 1:1,250,000 Scale. General Directorate of Mineral Research and Exploration (MTA), Ankara-Turkey.

  • Emre, O., Duman, T. Y., Ozalp, S., Saroglu, F., Olgun, S., Elmaci, H., et al. (2016). Active fault database of Turkey. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-016-0041-2.

    Google Scholar 

  • Erslev, E. (1988). Normalized center-to-center strain analysis of packed aggregates. Journal of Structural Geology, 10, 201–209. https://doi.org/10.1016/0191-8141(88)90117-4.

    Article  Google Scholar 

  • Erslev, E., & Ge, H. (1990). Least-squares center-to-center and mean object ellipse fabric analysis. Journal of Structural Geology, 12, 1047–1059. https://doi.org/10.1016/0191-8141(90)90100-D.

    Article  Google Scholar 

  • Fossen, H., & Cavalcante, G. C. G. (2017). Shear zones—a review. Earth-Science Reviews, 171, 434–455. https://doi.org/10.1016/j.earscirev.2017.05.002.

    Article  Google Scholar 

  • Fossen, H., & Tikoff, B. (1993). The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression–transtension tectonics. Journal of Structural Geology. https://doi.org/10.1016/0191-8141(93)90137-y.

    Google Scholar 

  • Fry, N. (1979). Random point distributions and strain measurement in rocks. Tectonophysics, 60, 89–105. https://doi.org/10.1016/0040-1951(79)90135-5.

    Article  Google Scholar 

  • Genier, F., & Epard, J. L. (2007). The Fry method applied to an augen orthogneiss: Problems and results. Journal of Structural Geology, 29, 209–224. https://doi.org/10.1016/j.jsg.2006.08.008.

    Article  Google Scholar 

  • Gratier, J., Dysthe, D. K., & Renard, F. (2013). The role of pressure solution creep in the ductility of the Earth’ s upper crust. Advances in Geophysics, 54, 47–179. https://doi.org/10.1016/B978-0-12-380940-7.00002-0.

    Article  Google Scholar 

  • Gratier, J.-P., Noiriel, C., & Renard, F. (2015). Experimental evidence for rock layering development by pressure solution. Geology, 43(10), 871–874. https://doi.org/10.1130/G36713.1.

    Article  Google Scholar 

  • Gratier, J. P., Richard, J., Renard, F., Mittempergher, S., Doan, M. L., Di Toro, G., et al. (2011). Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth. Geology, 39, 1131–1134. https://doi.org/10.1130/G32073.1.

    Article  Google Scholar 

  • Graymer, R. W., Ponce, D. A., Phelps, G. A., & Wentworth, C. M. (2005). Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock units with variations in seismicity, creep rate, and fault dip. Geology, 33, 521–524. https://doi.org/10.1130/G21435.1.

    Article  Google Scholar 

  • Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55, 169–198. https://doi.org/10.1002/2016RG000539.

    Article  Google Scholar 

  • Heilbronner, R. (2002). Analysis of bulk fabrics and microstructure variations using tesselations of autocorrelation functions. Computers and Geosciences, 28, 447–455. https://doi.org/10.1016/S0098-3004(01)00088-7.

    Article  Google Scholar 

  • Heilbronner, R., & Barrett, S. (2014). Image analysis in earth sciences microstructures and textures of earth materials. Berlin: Springer.

    Book  Google Scholar 

  • Herece, E. I., & Akay, E. (2003). Atlas of North Anatolian Fault, General Directorate of Mineral Research and Exploration (MTA), Ankara, Turkey.

  • Hull, J. (1988). Thickness–displacement relationships for deformation zones. Journal of Structural Geology, 10, 431–435. https://doi.org/10.1016/0191-8141(88)90020-X.

    Article  Google Scholar 

  • Hussain, E., Hooper, A., Wright, T. J., Walters, R. J., & Bekaert, D. P. S. (2016). Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements. Journal of Geophysical Research Solid Earth, 121, 9000–9019. https://doi.org/10.1002/2016JB013108.

    Article  Google Scholar 

  • Imber, J., Holdsworth, R. E., Butler, C. A., & Strachan, R. A. (2001). A reppraisal of the Sibson-Scholz fault model: The nature of the frictional to viscous (brittle-ductile) transition along a long-lived crustal-scale fault, Outer Hebrides, Scotland. Tectonics, 20, 601–624.

    Article  Google Scholar 

  • Janssen, C., Michel, G. W., Bau, M., Lüders, V., & Mühle, K. (1997). The North Anatolian fault zone and the role of fluids in seismogenic deformation. The Journal of Geology, 105(3), 387–404. https://doi.org/10.1086/515934.

    Article  Google Scholar 

  • Jefferies, S. P., Holdsworth, R. E., Wibberley, C. A. J., Shimamoto, T., Spiers, C. J., Niemeijer, A. R., et al. (2006). The nature and importance of phyllonite development in crustal-scale fault cores: An example from the Median Tectonic Line, Japan. Journal of Structural Geology, 28, 220–235.

    Article  Google Scholar 

  • Kaduri, M., Gratier, J.-P., Renard, F., Çakir, Z., & Lasserre, C. (2017). The implications of fault zone transformation on aseismic creep: Example of the North Anatolian Fault, Turkey. Journal of Geophysical Research Solid Earth., 122, 4208–4236. https://doi.org/10.1002/2016JB013803.

    Article  Google Scholar 

  • Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X., & Furuya, M. (2013). Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research Solid Earth, 118, 316–331. https://doi.org/10.1029/2012JB009661.

    Article  Google Scholar 

  • Karmakar, S., Lemaître, A., Lerner, E., & Procaccia, I. (2010). Predicting plastic flow events in athermal shear-strained amorphous solids. Physical Review Letters, 104, 215502. https://doi.org/10.1103/PhysRevLett.104.215502.

    Article  Google Scholar 

  • Lockner, D., Morrow, C., Moore, D., & Hickman, S. (2011). Low strength of deep San Andreas fault gouge from SAFOD core. Nature, 472, 82–85. https://doi.org/10.1038/nature09927.

    Article  Google Scholar 

  • Mavko, G. M. (1981). Mechanics of motion on major faults. Annual Review of Earth and Planetary Sciences, 9, 81–111. https://doi.org/10.1146/annurev.ea.09.050181.000501.

    Article  Google Scholar 

  • Mulchrone, K. F. (2013). Fitting the void: Data boundaries, point distributions and strain analysis. Journal of Structural Geology, 46, 22–33. https://doi.org/10.1016/j.jsg.2012.10.011.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Pennacchioni, G. (2005). Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites. Southern Alps (Italy), 27, 627–644. https://doi.org/10.1016/j.jsg.2004.11.008.

    Google Scholar 

  • Ramsay, J. G. (1967). Folding and fracturing of rocks. New York: McGraw-Hill.

    Google Scholar 

  • Ramsay, J. G. (1980). Shear zone geometry: A review. Journal of Structural Geology, 2, 83–99. https://doi.org/10.1016/0191-8141(80)90038-3.

    Article  Google Scholar 

  • Ramsay, J. G., & Graham, R. H. (1970). Strain variation in shear belts. Canadian Journal of Earth Sciences, 7, 786–813. https://doi.org/10.1139/e70-078.

    Article  Google Scholar 

  • Reilinger, R., et al. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research Solid Earth, 111(5), 1–26. https://doi.org/10.1029/2005JB004051.

    Google Scholar 

  • Renard, F., Dysthe, D. K., Feder, Bjørlykke, K., & Jamtveit, B. (2001). Enhanced pressure solution creep rates induced by clay particles: Experimental evidence in salt aggregates. Geophysical Research Letters, 28(7), 1295–1298. https://doi.org/10.1029/2000GL012394.

    Article  Google Scholar 

  • Richard, J., Gratier, J.-P., Doan, M., Boullier, A., & Renard, F. (2014). Rock and mineral transformations in a fault zone leading to permanent creep: Interactions between brittle and viscous mechanisms in the San Andreas Fault. Journal of Geophysical Research Solid Earth, 119, 8132–8153. https://doi.org/10.1002/2014JB011489.

    Article  Google Scholar 

  • Rousset, B., Jolivet, R., Simons, M., Lasserre, C., Riel, B., Milillo, P., et al. (2016). An aseismic slip transient on the North Anatolian Fault. Geophysical Research Letters, 43(7), 3254–3262. https://doi.org/10.1002/2016GL068250.

    Article  Google Scholar 

  • Samuelson, J., & Spiers, C. J. (2012). Fault friction and slip stability not affected by CO2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks. International Journal of Greenhouse Gas Control, 11, 78–90. https://doi.org/10.1016/j.ijggc.2012.09.018.

    Article  Google Scholar 

  • Savage, J. C., & Burford, R. O. (1973). Geodetic determination of relative plate motion in central California. Journal of Geophysical Research, 78, 832–845. https://doi.org/10.1029/JB078i005p00832.

    Article  Google Scholar 

  • Scholz, C. H. (2002). The mechanics of earthquake faulting (2nd ed.). Boston: Cambridge University Press.

    Book  Google Scholar 

  • Şengör, A. M. C., Tuysuz, O., Imren, C., Sakinc, M., Eyidogan, H., Gorur, N., et al. (2004). The North Anatolian fault: A new look. Annual Review of Earth and Planetary Sciences, 33, 1–75.

    Google Scholar 

  • Sone, H., Shimamoto, T., & Moore, D. E. (2012). Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, central Japan. Journal of Structural Geology, 38, 172–182. https://doi.org/10.1016/j.jsg.2011.09.007.

    Article  Google Scholar 

  • Stein, R. S., Barka, A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x.

    Article  Google Scholar 

  • Stewart, M. A., Holdsworth, R. E., & Strachan, R. A. (2000). Deformation processes and weakening mechanisms within the frictional-viscous transition zone of major crustal faults: Insights from the Great Glen Fault zone, Scotland. Journal of Structural Geology, 22, 543–560.

    Article  Google Scholar 

  • Thomas, M. Y., Avouac, J.-P., Gratier, J.-P., & Lee, J.-C. (2014). Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan. Tectonophysics, 632, 48–63. https://doi.org/10.1016/j.tecto.2014.05.038.

    Article  Google Scholar 

  • Toussaint, R., Aharonov, E., Koehn, D., Gratier, J.-P., Ebner, M., Baud, P., et al. (2018). Stylolites: A review. Journal of Structural Geology, 114, 163–195. https://doi.org/10.1016/j.jsg.2018.05.003.

    Article  Google Scholar 

  • van der Pluijm, B. A., & Marshak, S. (2010). Earth structures: An introduction to structural geology and tectonics (2nd ed.). New York: W.W. Norton Company.

    Google Scholar 

  • Vitale, S., & Mazzoli, S. (2008). Heterogeneous shear zone evolution: The role of shear strain hardening/softening. Journal of Structural Geology, 30, 1383–1395. https://doi.org/10.1016/j.jsg.2008.07.006.

    Article  Google Scholar 

  • Weertman, J., & Weertman, J. H. (1964). Elementary dislocation theory. New York: Macmilan.

    Google Scholar 

  • Wilson, M., Tankut, A., & Guleç, N. (1997). Tertiary volcanism of the Galatia province, north-west Central Anatolia, Turkey. Lithos, 42(1–2), 105–121.

    Article  Google Scholar 

  • Zubtsov, S., Renard, F., Gratier, J. P., Guiguet, R., Dysthe, D. K., & Traskine, V. (2004). Experimental pressure solution compaction of synthetic halite/calcite aggregates. Tectonophysics, 385, 45–57. https://doi.org/10.1016/j.tecto.2004.04.016.

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 316889 (ITN FlowTrans) and by the Norwegian Research Council grant no. 250661 ‘HADES’ to FR. The authors thank Nathaniel Findling, Valerie Magnin and Valentina Batanova for technical support with sample preparation and XRD and EPMA analytical measurements at ISTerre. The authors thank the editor, Yehuda Ben-Zion, and two reviewers for detailed comments and suggestions that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Renard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaduri, M., Gratier, JP., Lasserre, C. et al. Quantifying the Partition Between Seismic and Aseismic Deformation Along Creeping and Locked Sections of the North Anatolian Fault, Turkey. Pure Appl. Geophys. 176, 1293–1321 (2019). https://doi.org/10.1007/s00024-018-2027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2027-2

Keywords

Navigation