Skip to main content
Log in

Redox state of iron during high-pressure serpentinite dehydration

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Cerro del Almirez massif (Spain) represents a unique fragment of serpentinized oceanic lithosphere that has been first equilibrated in the antigorite stability field (Atg-serpentinites) and then dehydrated into chlorite–olivine–orthopyroxene (Chl-harzburgites) at eclogite facies conditions during subduction. The massif preserves a dehydration front between Atg-serpentinites and Chl-harzburgites. It constitutes a suitable place to study redox changes in serpentinites and the nature of the released fluids during their dehydration. Relative to abyssal serpentinites, Atg-serpentinites display a low Fe3+/FeTotal(BR) (=0.55) and magnetite modal content (=2.8–4.3 wt%). Micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy measurements of serpentines at the Fe–K edge show that antigorite has a lower Fe3+/FeTotal ratio (=0.48) than oceanic lizardite/chrysotile assemblages. The onset of Atg-serpentinites dehydration is marked by the crystallization of a Fe3+-rich antigorite (Fe3+/FeTotal = 0.6–0.75) in equilibrium with secondary olivine and by a decrease in magnetite amount (=1.6–2.2 wt%). This suggests a preferential partitioning of Fe3+ into serpentine rather than into olivine. The Atg-breakdown is marked by a decrease in Fe3+/FeTotal(BR) (=0.34–0.41), the crystallization of Fe2+-rich phases and the quasi-disappearance of magnetite (=0.6–1.4 wt.%). The observation of Fe3+-rich hematite and ilmenite intergrowths suggests that the O2 released by the crystallization of Fe2+-rich phases could promote hematite crystallization and a subsequent increase in fo2 inside the portion of the subducted mantle. Serpentinite dehydration could thus produce highly oxidized fluids in subduction zones and contribute to the oxidization of the sub-arc mantle wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653

    Article  Google Scholar 

  • Alt JC, Garrido CJ, Shanks WC III, Turchyn A, Padrón-Navarta JA, López-Sánchez-Vizcaíno V, Gómez Pugnaire MT, Marchesi C (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett 327–328:50–60

    Article  Google Scholar 

  • Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320

    Article  Google Scholar 

  • Andreani M, Muñoz M, Marcaillou C, Delacour A (2013) μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178:70–83

    Article  Google Scholar 

  • Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33:189–208

    Article  Google Scholar 

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris S (2006) Unravelling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP leg 209, site 1274). Geophys Res Lett 33:L13306

    Article  Google Scholar 

  • Bali E, Audetat A, Keppler H (2011) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161:597–613

    Article  Google Scholar 

  • Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24:351–354

    Article  Google Scholar 

  • Bouilhol P, Burg JP, Bodinier JL, Schmidt MW, Bernasconi S, Dawood D (2012) Gem olivine and calcite mineralization precipitated from subduction-derived fluids in the Kohistan arc-mantle (Pakistan). Can Mineral 50:1291–1304

    Article  Google Scholar 

  • Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high-pressure stability. Am Mineral 88:99–108

    Google Scholar 

  • Burton BP, Davidson PM (1988) Multicritical phase relations in minerals. In: ESS Ghose, JMD Coey (eds), Advances in physical geochemistry, volume 7, 60. Springer, New York

  • Canil D, O’Neill HStC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37:609–635

    Article  Google Scholar 

  • Charlou J, Donval JP, Fouquet Y, Jean Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359

    Article  Google Scholar 

  • De Faria DLA, Venancio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  • Debret B, Andreani M, Godard M, Nicollet C, Schwartz S, Lafay R (2013a) Trace element behaviour during serpentinization/deserpentinization of an eclogitized oceanic lithosphere: a LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chem Geol 357:117–133

    Article  Google Scholar 

  • Debret B, Nicollet C, Andreani M, Schwartz S, Godard M (2013b) Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif—Western Alps). J Metamorph Geol 31:165–186

    Article  Google Scholar 

  • Debret B, Koga K, Nicollet C, Andreani M, Schwartz S (2014a) F, Cl and S input via serpentinite in subduction zones: implications on the nature of the fluid released at depth. Terra Nova 26:96–101

    Article  Google Scholar 

  • Debret B, Andreani M, Munoz M, Bolfan-Casanova N, Carlut J, Nicollet C, Schwartz S, Trcera N (2014b) Evolution of Fe redox state in serpentine during subduction. Earth Planet Sci Lett 400:206–218

    Article  Google Scholar 

  • Delacour A, Früh-Green GL, Bernasconi SM (2008a) Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochim Cosmochim Acta 72:5111–5127

    Article  Google Scholar 

  • Delacour A, Früh-Green GL, Bernasconi SM, Schaeffer P, Kelley DS (2008b) Carbon geochemistry of serpentinites in the Lost City hydrothermal system. Geochim Cosmochim Acta 72:3681–3702

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Cambridge University Press, Cambridge, p 573

    Book  Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Article  Google Scholar 

  • Evans BW (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38:879–882

    Article  Google Scholar 

  • Evans KA (2012) The redox budget of subduction zones. Earth Sci Rev 113:11–32

    Article  Google Scholar 

  • Evans KA, Tomkins A (2011) The relationship between subduction zone redox budget and arc magma fertility. Earth Planet Sci Lett 308:401–409

    Article  Google Scholar 

  • Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40:333–348

    Article  Google Scholar 

  • Evans BW, Dyar MD, Kuehner SM (2012) Implications of ferrous and ferric iron in antigorite. Am Mineral 97:184–196

    Article  Google Scholar 

  • Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26:31–63

    Article  Google Scholar 

  • Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. In: DH Lindsley (ed), Oxide minerals: petrologic and magnetic significance. Rev mineral 25: 1–8

  • Frost BR, Evans KA, Swapp SM, Beard JS, Mothersole FE (2013) The process of serpentinization in dunite from New Caledonia. Lithos 178:24–39

    Article  Google Scholar 

  • Fuchs Y, Linares J, Mellini M (1998) Mössbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Phys Chem Mineral 26:111–115

    Article  Google Scholar 

  • Garrido CJ, López-Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Trommsdorff V, Alard O, Bodinier JL, Godard M (2005) Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochem Geophys Geosyst 6:Q01J15

    Google Scholar 

  • Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (fifteen-twenty fracture zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267:410–425

    Article  Google Scholar 

  • Gómez-Pugnaire MT, Galindo-Zaldivar J, Rubatto D, González-Lodeiro F, López-Sánchez-Vizcaíno V, Jabaloy A (2004) A reinterpretation of the Nevado-Filabride and Alpujarride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Mineral Petrogr Mitt 84:303–322

    Google Scholar 

  • Jasonov PG, Nougaliev DK, Burov BV, Heller F (1998) A modernized coercivity spectrometer. Geol Carpath 49:224–225

    Google Scholar 

  • Kelley K, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    Article  Google Scholar 

  • Klein F, Bach W (2009) Fe–Ni–Co–O–S phase relations in peridotite seawater interactions. J Petrol 50:37–59

    Article  Google Scholar 

  • Klein F, Bach W, Humphris SE, Kahl W-A, Jöns N, Moskowitz B, Berquó TS (2013) Magnetite in seafloor serpentinite—Some like it hot. Geology. doi:10.1130/g35068.1

    Google Scholar 

  • Kodolanyi J, Pettke T, Spandler C, Kamber BS, Gméling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53:235–270

    Article  Google Scholar 

  • Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278

    Article  Google Scholar 

  • Lee CTA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336

    Article  Google Scholar 

  • Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albarede F, Leeman W (2010) The redox of arc mantle using Zn/Fe systematics. Nature 468:681–685

    Article  Google Scholar 

  • López-Sánchez-Vizcaíno V, Trommsdorff V, Gómez-Pugnaire MT, Garrido CJ, Müntener O, Connolly JAD (2005) Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contrib Mineral Petrol 149:627–646

    Article  Google Scholar 

  • Malaspina N, Tumiati S (2012) The role of C–O–H and oxygen fugacity in subduction-zone garnet peridotites. Eur J Mineral 24:607–618

    Article  Google Scholar 

  • Marcaillou C, Muñoz M, Vidal O, Parra T, Harfouche M (2011) Mineralogical evidence for H2 degassing during serpentinization at 300°C/300 bar. Earth Planet Sci Lett 303:281–290

    Article  Google Scholar 

  • Marchesi C, Garrido CJ, Padrón-Navarta JA, López-Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2013) Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos 178:128–142

    Article  Google Scholar 

  • Maurice J, Bolfan-Casanova N (2014) Experimental study of serpentine dehydration. Lherzolite conference, Marrakech, Maroc, abstr

  • McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875

    Article  Google Scholar 

  • Muñoz M, Vidal O, Marcaillou C, Sakura P, Mathon O, Farges F (2013) Iron oxidation state in phyllosilicate single crystals using Fe–K edge and XANES spectroscopy: effects of the linear polarization of the synchrotron X-ray beam. Am Mineral 98:1187–1197

    Article  Google Scholar 

  • O’Hanley DS, Dyar MD (1993) The composition of lizardite 1 T and the formation of magnetite in serpentinites. Am Mineral 78:391–404

    Google Scholar 

  • Oufi O, Cannat M, Horen H (2002) Magnetic properties of variably serpentinized abyssal peridotites. J Geophys Res 107-1978-2012

  • Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT, Jabaloy A, Capitani G, Mellini M (2008) Highly ordered antigorite from Cerro del Almirez HP–HT serpentinites, SE Spain. Contrib Mineral Petrol 156:679–688

    Article  Google Scholar 

  • Padrón-Navarta JA, Tommasi A, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Jabaloy A, Vauchez A (2010a) Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth Planet Sci Lett 297:271–286

    Article  Google Scholar 

  • Padrón-Navarta JA, Hermann J, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2010b) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib Mineral Petrol 159:25–42

    Article  Google Scholar 

  • Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gomez-Pugnaire MT (2011) metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride complex, Southern Spain). J Petrol 52:2047–2078

    Article  Google Scholar 

  • Padrón-Navarta JA, López Sánchez-Vizcaíno V, Hermann J, Connolly JAD, Garrido CJ, Gómez-Pugnaire MT, Marchesi C (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178:186–196

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423

    Article  Google Scholar 

  • Ruiz Cruz MD, Puga E, Nieto JM (1999) Silicate and oxide exsolution in pseudospinifex olivine from metaultramafic rocks of the Betic Ophiolitic association: a TEM study. Am Mineral 84:1915–1924

    Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Fryer P (2007) Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res. doi:10.1029/2006JB004749

    Google Scholar 

  • Scambelluri M, Tonarini S (2012) Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40:907–910

    Article  Google Scholar 

  • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gómez- Pugnaire MT, López-Sánchez-Vizcaíno V (2001) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470

    Article  Google Scholar 

  • Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613

    Article  Google Scholar 

  • Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende AL (2013) Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178:197–210

    Article  Google Scholar 

  • Song S, Su L, Niu Y, Lai Y, Zhang L (2009) CH4 inclusions in orogenic harzburgite: evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta 73:1737–1754

    Article  Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201

    Google Scholar 

  • Stolper E, Newman S (1994) The role of water in petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    Article  Google Scholar 

  • Tauxe L (2009) Essentials of paleomagnetism. University of California Press, San Diego, p 512

    Google Scholar 

  • Thompson JB (1982) Composition space: an algebraic and geometric approach. Rev Mineral Geochem 10:1–31

    Google Scholar 

  • Torres-Roldán RL, García-Casco A, García-Sanchez PA (2000) CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Comput Geosci 26:779–793

    Article  Google Scholar 

  • Trommsdorff V, López Sánchez-Vizcaíno V, Gomez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol 132:139–148

    Article  Google Scholar 

  • Tumiati S, Godard G, Martin S, Malaspina N, Poli S (2015) Ultra-oxidized rocks in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment. Lithos. doi:10.1016/j.lithos.2014.12.008

    Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Vils F, Pelletier L, Kalt A, Müntener O, Ludwig T (2008) The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): implications for lithium and boron budgets of oceanic lithosphere. Geochim Cosmochim Acta 72:5475–5504

    Article  Google Scholar 

  • Vils F, Müntener O, Kalt A, Ludwig T (2011) Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks. Geochim Cosmochim Acta 75:1249–1271

    Article  Google Scholar 

  • Wilke M, Farges F, Petit PE, Gordon EB, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86:714–730

    Google Scholar 

Download references

Acknowledgments

We acknowledge SOLEIL for provision of synchrotron radiation facilities on LUCIA beamline (Project No. 20121036). We thank J.-L. Devidal (LMV, Clermont-Ferrand) for his assistance during microprobe analyses, P. Boulhiol (Durham University) for instructive discussions, and MR Reyes-González for sample preparation. We thank N. Malaspina and K. Evans for critical comments on an earlier version of this article, and O. Müntener for his careful editorial handling. The Raman spectroscopy facility at the ENS Lyon is supported by CNRS INSU. This work was supported by ANR11JS5601501 HYDEEP, grant to Nathalie Bolfan-Casanova. The first author is supported by the ERC HabitablePlanet (306655), grant attributed to Helen Williams (Durham University, UK). JAPN has been supported by a EU-FP7-funded Marie Curie postdoctoral grant under contract agreement PIOF-GA-2010-273017. JAPN, VLSV, MTGP, and CJG are supported by “Ministerio de Economía y Competitividad” Grants CGL2012-32067 and CGL2013-42349-Pand Junta de Andalucía Grants RNM-145, RNM-131, and P09-RNM-4495, funded by the European Regional Development Fund. The authors further acknowledge support by the Marie Curie ITN-ZIP funded under Grant agreement PITN-GA-2013-604713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Debret.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 116 kb)

Supplementary material 2 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debret, B., Bolfan-Casanova, N., Padrón-Navarta, J.A. et al. Redox state of iron during high-pressure serpentinite dehydration. Contrib Mineral Petrol 169, 36 (2015). https://doi.org/10.1007/s00410-015-1130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1130-y

Keywords

Navigation