Skip to main content
Log in

Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We use cross-correlations of ambient seismic noise between pairs of 158 broadband and short-period sensors to investigate velocity structure over the top 5–10 km of the crust in the Southern California plate boundary region around the San Jacinto Fault Zone (SJFZ). From the 9-component correlation tensors associated with all station pairs we derive dispersion curves of Rayleigh and Love wave group velocities. The dispersion results are inverted first for Rayleigh and Love waves group velocity maps on a 1.5 × 1.5 km2 grid that includes portions of the SJFZ, the San Andreas Fault (SAF), and the Elsinore fault. We then invert these maps to 3D shear wave velocities in the top ~7 km of the crust. The distributions of the Rayleigh and Love group velocities exhibit 2θ azimuthal anisotropy with fast directions parallel to the main faults and rotations in complex areas. The reconstructed 3D shear velocity model reveals complex shallow structures correlated with the main geological units, and strong velocity contrasts across various fault sections along with low-velocity damage zones and basins. The SJFZ is marked by a clear velocity contrast with higher V s values on the NE block for the section SE of the San Jacinto basin and a reversed contrast across the section between the San Jacinto basin and the SAF. Velocity contrasts are also observed along the southern parts on the SAF and the Elsinore fault, with a faster southwest block in both cases. The region around the Salton Trough is associated with a significant low-velocity zone. Strong velocity reductions following flower-shape with depth are observed extensively around both the SJFZ and the SAF, and are especially prominent in areas of geometrical complexity. In particular, the area between the SJFZ and the SAF is associated with an extensive low-velocity zone correlated with diffuse seismicity at depth, and a similar pattern including correlation with deep diffuse seismicity is observed on a smaller scale in the trifurcation area of the SJFZ. These results augment local earthquake tomography images that have low resolution in the top few km of the crust, and provide important constraints for studies concerned with behavior of earthquake ruptures, generation of rock damage, and seismic shaking hazard in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allam, A. A. and Y. Ben-Zion (2012), Seismic velocity structures in the Southern California plate-boundary environment from double-difference tomography, Geophys. J. Int., 190, 1181–1196, doi:10.1111/j.1365-246X.2012.05544.x.

  • Allam, A. A., Y. Ben-Zion I. Kurzon and F. L. Vernon (2014), Seismic velocity structure in the Hot Springs and Trifurcation Seismicity Cluster Areas of the San Jacinto Fault Zone from double-difference tomography, Geophys. J. Int., 198, 978–999, doi:10.1093/gji/ggu176.

  • Alvizuri, C. and T. Tanimoto, (2011). Azimuthal anisotropy from array analysis of Rayleigh waves in Southern California. Geophys. J. Int., 186, B08307.

  • Ampuero, J.-P. and Y. Ben-Zion (2008). Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity- weakening friction, Geophys. J. Int., 173, 674–692, doi:10.1111/j.1365-246X.2008.03736.x.

  • Aster, R.C., Shearer, P.M. and Berger, J., (1990). Quantitative measurements of shear wave polarizations at the Anza seismic network, southern California: Implications for shear wave splitting and earthquake prediction, J. Geophys. Res., 95, 12 449–12 473.

  • Bailey, I. W., Ben-Zion, Y., Becker, T. W. and Holschneider, M. (2010), Quantifying focal mechanism heterogeneity for fault zones in central and southern California. Geophysical Journal International, 183: 433–450. doi:10.1111/j.1365-246X.2010.04745.x.

  • Barmin, M., M. Ritzwoller, and A. Levshin (2001), A fast and reliable method for surface wave tomography, Pure Appl. Geophys., 158(8), 1351–1375.

  • Bensen G.D., Ritzwoller M.H., Barmin M.P., Levshin A. L., Lin F., Moschetti M. P, Shapiro N. M. Yang Y., (2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurment, Geophys. J. Int., 169, 1239–1260.

  • Ben-Zion, Y. (2008). Collective behavior of earthquakes and faults: continuum-discrete transitions, evolutionary changes and cor- responding dynamic regimes, Rev. Geophys., 46, RG4006, doi:10.1029/2008RG000260.

  • Ben-Zion, Y. and D. J. Andrews, (1998), Properties and Implications of Dynamic Rupture Along a Material Interface, Bull. Seism, Soc. Am., 88, 1085–1094.

  • Ben-Zion, Y., T. Rockwell, Z. Shi and S. Xu, (2012). Reversed-polarity secondary deformation structures near fault stepovers, J. of Appl. Mech., 79, 031025, doi:10.1115/1.4006154.

  • Ben-Zion, Y. and C.G. Sammis (2003). Characterization of fault zones, Pure appl. Geophys., 160, 677–715.

  • Ben-Zion, Y. and Z. Shi (2005). Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett., 236, 486–496, doi:10.1016/j.epsl.2005.03.025.

  • Boore, D.M. (2014). What do data used to develop ground-motion prediction equations tell us about motions near faults?, Pure and Applied Geophysics, doi:10.1007/s00024-013-0748-9.

  • Boness N.L. and M.D. Zoback, (2006). A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth. Geophysics, 71, doi:10.1190/1.2231107.

  • Boué P., P. Roux, M. Campillo and B. de Cacqueray (2013) Double beamforming processing in a seismic prospecting context. Geophysics. Volume: 78 Issue: 3 Pages: V101–V108 doi:10.1190/GEO2012-0364.1.

  • Campillo, M. and A Paul, (2003), Long-range correlations in the seismic coda, Science 299, 547–549.

  • Campillo, M., Roux, P. and Shapiro, N.M., (2011), Using seismic noise to image and to monitor the Solid Earth, in Encyclopedia of Solid Earth Geophysics, ed. Gupta, Harsh K., pp. 1230–1235, Springer.

  • Campillo, M., S. Singh, N. Shapiro, J. Pacheco, and R. Herrmann (1996), Crustal structure south of the Mexican volcanic belt, based on group velocity dispersion, Geofis. Int., 35, 361–370.

  • Dair, L., and Cooke, M.L., (2009), San Andreas fault geometry through the San Gorgonio Pass, California: The Geological Society of America, v. 37; no. 2, p.119–122.

  • Dor, O., Rockwell, T.K. and Ben-Zion, Y., (2006). Geologic observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in southern California: a possible indicator for preferred rupture propagation direction, Pure appl. Geophys., 163, 301–349, doi:10.1007/s00024-005-0023-9.

  • Fay, N.P. and Humphreys, E.D., (2005). Fault slip rates, effects of elastic het- erogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California, J. geophys. Res., 110, B09401, doi:10.1029/2004JB003548.

  • Fialko, Y., L. Rivera, and H. Kanamori, (2005). Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault, Geophys. J. Int., 160, 527–532.

  • Finzi, Y., Hearn, E.H., Lyakhovsky, V. and Y. Ben-Zion (2009). Structural properties and deformation patterns of evolving strike-slip faults: numerical simulations incorporating damage rheology, Pure appl. Geophys., 166, 1537–1573, doi:10.1007/s00024-009-0522-1.

  • Froment B., Campillo M., Roux P., Gouedard P., Verdel A., Weaver R.L. (2010), Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations, Geophysics, 75, SA85–SA93, doi:10.1190/1.3483102.

  • Fry, B., F. Deschamps, E. Kissling, L. Stehly, and D. Giardini (2010), Layered azimuthal anisotropy of Rayleigh wave phase velocities in the European Alpine lithosphere inferred from ambient noise, Earth Planet. Sci. Lett., 297(1), 95–102.

  • Fuis, S. G., D. Scheirers, E. V. Langenheim, D. M. Koh- Ler, (2012). A New Perspective on the Geometry of the San An- dreas Fault of South California and Relationship to Litho- spheric Structure, Bulletin of Seismological Society of America, Vol. 102, 2012, pp. 236–1251.

  • Hansen, P. and O’Leary, D., (1993). The use of the L-Curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14, 1487–1503.

  • Hauksson, E. (2000), Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California, J. Geophys. Res., 105, 13,875– 13,903.

  • Hauksson, E., W. Yang, and P. M. Shearer, (2012). Waveform Relocated Earthquake Catalog for Southern California (1981 to June 2011); Bull. Seismol. Soc. Am., Vol. 102, No. 5, doi:10.1785/0120120010.

  • Herman, R.B. and Ammon, C.J., (2002). Surface Waves, Receiver Function and Crustal Structure, St. Louis University.

  • Hillers, G. and Y. Ben-Zion, (2011), Seasonal variations of observed noise amplitudes at 2-18 Hz in southern California, Geophys. J. Int., 184, 860–868, doi: 10.1111/j.1365-246X.2010.04886.x.

  • Hillers, G., Y. Ben-Zion, M. Landès, and M. Campillo (2013), Interaction of microseisms with crustal heterogeneity : A case study from the San Jacinto fault zone area, Geochem. Geophys. Geosyst., 14, 2182–2197, doi:10.1002/ggge.20140.

  • Janecke, S.U., Dorsey, R.J., and Belgarde, B., (2010). Age and structure of the San Jacinto and San Felipe fault zones and their lifetime slip rates: In Clifton, H.E., and Ingersoll, R.V., eds., 2010, Geologic excursions in California and Nevada: tectonics, stratigraphy and hydrogeology: Pacific Section, SEPM (Society for Sedimentary Geology) Book 108, p. 233–271.

  • Kaneko, Y., and Fialko Y., (2011). Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response. Geophysical Journal International. 186:1389–1403.

  • Kimman W.P. and Trampert J., (2010). Approximations in seismic interferometry and their effects on surface waves, Geophys. J. Int., 182, 461–476.

  • Kirby, S.M., Janecke, S.U., Dorsey, R.J., Housen, B.A., McDougall, K., Langenheim, V., and Steely, A. (2007). Pleistocene Brawley and Ocotillo formations: evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zones, Calif. J. Geol. 115, 43–62.

  • Kurzon, I., F.L. Vernon, Y. Ben-Zion and G. Atkinson, (2014). Ground Motion Prediction Equations in the San Jacinto Fault Zone—Significant Effects of Rupture Directivity and Fault Zone Amplification, Pure Appl. Geophys., doi:10.1007/s00024-014-0855-2.

  • Landès, M., Hubans, F., Shapiro, N., Paul, A. and Campillo, M., (2010). Origin of deep ocean microseisms by using teleseismic body waves, J. geophys. Res., 115, B05302, doi:10.1029/2009JB006918.

  • Levshin, A., Yanovskaya, T., Lander, A., Bukchin, B., Barmin, M., Ratnikova, L. and Its, E., (1989). Seismic Surface Waves in a Laterally Inhomo- geneous Earth, Kluwer, Dordrecht.

  • Lewis, M.A., Peng, Z., Ben-Zion, Y. and Vernon, F.L., (2005). Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California, Geophys. J. Int., 162, 867–881, doi:10.1111/j.1365-246X.2005.02684.x.

  • Lin, F., Moschetti, M. and Ritzwoller, M., (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophys. J. Int., 173(1), 281–298.

  • Lin, F., Ritzwoller, M., Townend, J., Bannister, S. and Savage, M., (2007). Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int., 170(2), 649–666.

  • Lin, F., Ritzwoller, M. H. and Snieder, R. (2009), Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophysical Journal International, 177:1091–1110. doi:10.1111/j.1365-246X.2009.04105.x.

  • Lin, F., M. Ritzwoller, Y. Yang, M. Moschetti, and M. Fouch (2011), Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States, Nat. Geosci., 4(1), 55–61.

  • Lin, G., Thurber, C.H., Zhang, H., Hauksson, E., Shearer, P., Waldhauser, F., Brocher, T.M. and Hardebeck, J., (2010). A California statewide three dimensional seismic velocity model from both absolute and differential times, Bull. seism. Soc. Am., 100, 225–240.

  • Lin, G., P. M. Shearer, E. Hauksson, and C. H. Thurber (2007), A three-dimensional crustal seismic velocity model for southern California from a composite event method, J. Geophys. Res., 112, B11306, doi:10.1029/2007JB004977.

  • Lindsey, E. O., and Y. Fialko (2013), Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry, J. Geophys. Res. Solid Earth, 118, 689–697, doi:10.1029/2012JB009358.

  • Liu, Y., T. L. Teng and Y. Ben-Zion, (2005). Near-surface seismic anisotropy, attenuation and dispersion in the aftershock region of the 1999 Chi–Chi, earthquake, Geophys. J. Int., 160, 695–706.

  • Magistrale, H., and C. Sanders (1996), Evidence from precise earthquake hypocenters for segmentation of the San Andreas Fault in San Gorgonio Pass, J. Geophys. Res., 101(B2), 3031–3044, doi:10.1029/95JB03447.

  • Marilyani, G.I., Rockwell, T.K., Onderdonk, N.H., and McGill, S.F (2013). Straightening of the Northern San Jacinto Fault, California as Seen in the Fault-structure Evolution of the San Jacinto Valley Stepover, Bull. Seismol. Soc. Am. 103(3).

  • Mordret, A., N. M. Shapiro, S. Singh, P. Roux, J.P. Montagner and O. I. Barkved, (2013). Azimuthal anisotropy at Valhall: the Helmholtz equation approach, Geophysical Research Letter, doi:10.1002/grl.50447.

  • Morton, N., Girty, G.H. and Rockwell, T.K., (2012). Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: a model for focused post-seismic fluid flow and heat transfer in the shallow crust, Earth planet. Sci. Lett., 330, 71–83, doi:10.1016/j.espl.2012.02.0.

  • Morton, D.M., and Matti, J.C., (1993), Extension and contraction within an evolving divergent strike-slip fault complex: The San Andreas and San Jacinto fault zones at their convergence in southern California, in Powell, R.E., Weldon, R.J.,II, and Matti, J.C., eds., The San Andreas fault system: Displacement, palinspastic reconstruction, and geologic evolution: Geological Society of America, Memoir 178, Chapter 5, p. 217–230.

  • Moschetti, M., Ritzwoller, M. and Shapiro, N., (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps, Geochem. Geophys. Geosyst, 8, Q08010, doi:10.1029/2007GC001655.

  • Onderdonk, N.W. (1998). The tectonic structure of the Hot Springs fault zone, Riverside County, California [Ph.D. Thesis]: California State University, Long Beach, California.

  • Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along the Karadere-Du¨zce branch of the north Anatolian fault, Geophys. J. Int., 159, 253–274, doi:10.1111/j.1365-246X.2004.02379.x.

  • Poli P., H. A. Pedersen, M. Campillo, and the POLENET/LAPNET Working Group (2012), Noise directivity and group velocity tomography in a region with small velocity contrasts : the northern Baltic Shield. Geophysical Journal International 192, 413–424.

  • Ritzwoller, M.H., F.C. Lin, and W. Shen (2011), Ambient noise tomography with a large continental seismic array, Compte Rendus Geoscience, 13 pages, doi:10.1016/j.crte.2011.03.007.

  • Rockwell, T., Loughman, C. and Merifield, P., (1990). Late Quaternary rate of slip along the San Jacinto fault zone near Anza, Southern California, J. geophys. Res. B, 95(6), 8593–8605.

  • Rockwell, T.K., Seitz, G.G., Dawson, T.E. and Young, J., (2006). The long record of San Jacinto Fault paleoearthquakes at Hog Lake; implications for regional patterns of strain release in the southern San Andreas Fault system, Seismol. Res. Lett., 77, 270–296.

  • Rockwell, T. K., T. E. Dawson, J. Young and Gordon Seitz (2014), A 21 event, 4,000-year history of surface ruptures in the Anza Seismic Gap, San Jacinto Fault: Implications for long-term earthquake production on a major plate boundary fault, Pure Appl. Geophys., in review.

  • Roux, P. and Y. Ben-Zion, (2014). Monitoring fault zone environments with correlations of earthquake waveforms, Geophys. J. Int., 196, 1073–1081, doi:10.1093/gji/ggt441.

  • Roux, P., Wathelet, M. and Roueff, A., (2011). The San Andreas Fault revisited through seismic-noise and surface-wave tomography, Geophys. Res. Lett., 38, L13319, doi:10.1029/2011GL047811.

  • Sabra, K. G., P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler (2005a), Extracting time-domain Greens function estimates from ambient seismic noise, Geophys. Res. Lett., 32, L03310, doi:10.1029/2004GL021862.

  • Sabra, K. G., P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler (2005b), Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32, L14311, doi:10.1029/2005GL023155.

  • Salisbury, J.B., Rockwell, T.K., Middleton, T.J. and Hudnut, K.W., (2012). LiDAR and field observations of slip distribution for the most recent surface ruptures along the central San Jacinto Fault, Bull. seism. Soc. Am., 102, 598–619, doi:10.1785/0120110068.

  • Schulte-Pelkum, V., P. S. Earle, and F. L. Vernon (2004), Strong directivity of ocean-generated seismic noise, Geochem. Geophys. Geosyst., 5, Q03004, doi:10.1029/2003GC000520.

  • Seeber, L., and J. G. Armbruster (1995), The San Andreas Fault system through the Transverse Ranges as illuminated by earthquakes, J. Geophys. Res., 100(B5), 8285–8310, doi:10.1029/94JB02939.

  • Shapiro, N. and Campillo, M., (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett, 31(7), doi:10.1029/2004GL019491.

  • Shapiro, N.M., Campillo, M., Stehly, L. and Ritzwoller, M.H., (2005). High resolution surface-wave tomography from ambient seismic noise, Science, 29, 1615–1617.

  • Sharp, R.V., (1967). San Jacinto fault zone in the Peninsular Ranges of south- ern California, Geol. Soc. Am. Bull., 78, 705–730.

  • Shi, Z. and Y. Ben-Zion, (2006). Dynamic rupture on a bimaterial interface governed by slip-weakening friction, Geophys. J. Int., 165, 469–484, doi:10.1111/j.1365-246X.2006.02853.x.

  • Smith, M., and F. Dahlen (1973), The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium, J. Geophys. Res., 78(17), 3321–3333.

  • Stehly, L, M. Campillo and N. Shapiro (2006), A Study of the seismic noise from its long-range correlation properties, Journal of Geophysical research, Vol 111, B10306.

  • Stehly, L., Fry, B., Campillo, M., Shapiro, N. M., Guilbert, J., Boschi, L. and Giardini, D. (2009), Tomography of the Alpine region from observations of seismic ambient noise. Geophysical Journal International, 178: 338–350. doi:10.1111/j.1365-246X.2009.04132.x.

  • Tape, C., Q. Liu, A. Maggi, and Tromp, J., (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods, Geophys. J. Int., 180, 433–462.

  • Wechsler, N., Rockwell, T.K. and Y. Ben-Zion (2009). Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault, Geomorphology, 113, 82–96, doi:10.1016/j.geomorph.2009.06.007.

  • Weaver, R.L., B. Froment and M. Campillo, (2009), On the correlation of non-isotropically distributed ballistic scalar diffuse waves: Journal of the Acoustical Society of America, 126 (4), 1817–1826, doi:10.1121/1.3203359.

  • Yang, H. and Zhu, L., (2010). Shallow low-velocity zone of the San Jacinto fault from local earthquake waveform modelling, Geophys. J. Int., 183, 421–432.

  • Yang, Y., Ritzwoller, M., Levshin, A. and Shapiro, N., (2007). Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168, 259–274.

  • Yang, Z., A. Sheehan, and P. Shearer (2011), Stress induced upper crustal anisotropy in southern California, J. Geophys. Res., 116, B02302, doi:10.1029/2010JB007655.

  • Yule, D., and K. Sieh (2003), Complexities of the San Andreas fault near San Gorgonio Pass: Implications for large earthquakes, J. Geophys. Res., 108, 2548, doi:10.1029/2001JB000451, B11.

  • Zaliapin, I. and Y. Ben-Zion, (2011). Asymmetric distribution of aftershocks on large faults in California, Geophys. J. Int., 185, 1288–1304, doi: 10.1111/j.1365-246X.2011.04995.x.

  • Zoback, M. and Healy, J. (1992). In Situ Stress Measurements to 3.5 km Depth in the Cajon Pass Scientific Research Borehole: Implications for the Mechanics of Crustal Faulting. Journal of Geophysical Research 97: doi:10.1029/91JB02175. issn: 0148-0227.

Download references

Acknowledgments

The data used in this work were recorded mostly by the Southern California Seismic Network operated by Caltech and USGS. We also used data recorded near the SJFZ by a temporary NSF-CD deployment operated by the University of California, San Diego, and data recorded by the University of California, Santa Barbara. We thank Amir Allam, Gregor Hillers, Nikolai Shapiro, Laurent Stehly, and Frank Vernon for useful discussions. We also thank Martha Savage, an anonymous referee, and Editor Antonio Rovelli for constructive comments. The study was supported by the National Science Foundation (grant EAR-0908903). MC and PR acknowledge support from the European Research Council (advanced grant 227507 “Whisper”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Zigone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

24_2014_872_MOESM1_ESM.jpg

Supplementary material 1 (A) Raw data for January 3, 2009, with an earthquake. (B) Same data after clipping at 4 std. (C) Same data after pre-processing using the sub-segment method (Poli et al, 2012) (JPEG 1270 kb)

24_2014_872_MOESM2_ESM.jpg

Supplementary material 2 (A) Cross-correlation between PLM and KNW stations obtained for January 3, 2009 after clipping at 4 std (red trace). The blue trace corresponds to the same pair but for a reference day (January 8, 2009) chosen for it’s good and clean noise. (B) Same as (A) but with the Poli et al, (2012) pre-processing method applies (see the data on Figure S1C) (JPEG 1257 kb)

24_2014_872_MOESM3_ESM.dat

Supplementary material 3 Shear wave velocity model based on Rayleigh waves. The V s model based on Rayleigh waves is provided in a text file named “Vs_Rayleigh.dat”. Each row is a cell of the model having 4 columns with the information: depth (km), longitude (deg), latitude (deg), and shear wave velocity (km/s). “NaN” in the V s column denotes a cell with no value (DAT 12,085 kb)

24_2014_872_MOESM4_ESM.dat

Supplementary material 4 Shear wave velocity model based on Love waves: The V s model based on Love waves is provided in a text file named ‘Vs_Love.dat’. The entries are the same as in ‘Vs_Rayleigh.dat’ (DAT 12,107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zigone, D., Ben-Zion, Y., Campillo, M. et al. Seismic Tomography of the Southern California Plate Boundary Region from Noise-Based Rayleigh and Love Waves. Pure Appl. Geophys. 172, 1007–1032 (2015). https://doi.org/10.1007/s00024-014-0872-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0872-1

Keywords

Navigation