Skip to main content
Log in

Seismic response of Beirut (Lebanon) buildings: instrumental results from ambient vibrations

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Resonance period is a key parameter in the seismic design of a structure, thus dynamic parameters of buildings in Beirut (Lebanon) were investigated based on ambient vibration method for risk and vulnerability assessment. Lebanon is facing high seismic hazard due to its major faults, combined to a high seismic risk caused by dense urbanization in addition to the lack of a seismic design code implementation. For this study, ambient vibration recordings have been performed on 330 RC buildings, period parameters extracted and statistically analyzed to identify correlations with physical building parameters (height, horizontal dimensions, age) and site characteristics (rock sites or soft sites). The study shows that (1) the building height or number of floors (N) is the primary statistically robust parameter for the estimation of the fundamental period T; (2) the correlation between T and N is linear and site dependent: T ≈ N/23 for rock sites and N/18 for soft sites; (3) the measured damping is inversely proportional to the period: the taller the building the lower is the damping; (4) a significant overestimation of the period exists in current building codes. However part of the large discrepancy with building code recommendations may be due to the very low level of loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Nimry H, Resheidat M, Al-Jamal M (2014) Ambient vibration testing of low and medium rise infilled RC frame buildings in Jordan. Soil Dyn Earthq Eng 59:21–29

    Article  Google Scholar 

  • ANR libris. Isterre.fr/annuaire/pages-web-du- personnel/christophe-voisin/article/projet-libris, 2010–2014

  • Applied Technology Council (1978) Tentative provisions for the development of seismic regulations for buildings. Report No. ATC3-06, Applied Technology Council, Palo Alto, CA

  • Asten MW (1978) Geological control on the three-component spectra of rayleigh-wave microseisms. Bull Seismol Soc Am 68(6):1623–1636

    Google Scholar 

  • Asten M, Henstridge J (1984) Array estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics 49(11):1828–1837

    Article  Google Scholar 

  • Bard P-Y, Afra H, Argoul P (1992) Dynamic behaviour of buildings: experimental results from strong motion data. In Recent advances in earthquake engineering and structural dynamics, ouest editions, pp 441–478

  • Bonnefoy-Claudet S, Cotton F, Bard P-Y (2006) The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci Rev 79(3):205–227

    Article  Google Scholar 

  • Boutin C, Ibraim E, Hans S, Roussillon P (2001) Etude expérimentale sur bâtiments réels. Rapport définitif, AFPS/MATE

  • Brax M (2013) Aléa et microzonage sismiques à Beyrouth. PhD thesis, Université Joseph-Fourier-Grenoble I

  • Brazee RJ, Cloud WK (1984) United States Earthquakes, 1956, open-file report 84-956

  • Building Standard Law of Japan (BSLJ) (2011) The Building Center of Japan, The Building Standard Law of Japan on CD-ROM, August 2011

  • Carder DS (1937) Observed vibrations of bridges. Bull Seismol Soc Am 27(4):267–303

    Google Scholar 

  • Caughey T, Stumpf H (1961) Transient response of a dynamic system under random excitation. J Appl Mech 28(4):563–566

    Article  Google Scholar 

  • Celebi M (1996) Comparison of damping in buildings under low-amplitude and strong motions. J Wind Eng Ind Aerodyn 59(2):309–323

    Article  Google Scholar 

  • Chatelain J-L, Guéguen P, Guillier B, Frechet J, Bondoux F, Sarrault J, Sulpice P, Neuville J-M (2000) CityShark: a user-friendly instrument dedicated to ambient noise (microtremor) recording for site and building response studies. Seismol Res Lett 71(6):698–703

    Article  Google Scholar 

  • Chiauzzi L, Masi A, Mucciarelli M, Cassidy J, Kutyn K, Traber J, Ventura C, Yao F (2012) Estimate of fundamental period of reinforced concrete buildings: code provisions vs. experimental measures in Victoria and Vancouver (BC, Canada). In: Proceedings of the 15th world conference on earthquake engineering, paper reference, vol 3033

  • Clinton JF, Bradford SC, Heaton TH, Favela J (2006) The observed wander of the natural frequencies in a structure. Bull Seismol Soc Am 96(1):237–257

    Article  Google Scholar 

  • Cornou C, Brax M, Salloum N, Rahhal ME, Harakeh F, Harb J et al. (2014). Shear-wave velocity structure and correlation with n-spt values in different geological formations in Beirut, Lebanon. In: Second European conference on earthquake engineering and seismology

  • Crowley H, Pinho R (2004) Period-height relationship for existing European reinforced concrete buildings. J Earthquake Eng 8(spec01):93–119

    Google Scholar 

  • Crowley H, Pinho R (2010) Revisiting Eurocode 8 formulae for periods of vibration and their employment in linear seismic analysis. Earthquake Eng Struct Dynam 39(2):223–235

    Google Scholar 

  • Daëron M, Klinger Y, Tapponnier P, Elias A, Jacques E, Sursock A (2007) 12,000-year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant Fault System, Lebanon©. Bull Seismol Soc Am 97(3):749–771

    Article  Google Scholar 

  • Ditommaso R, Vona M, Gallipoli M, Mucciarelli M (2013) Evaluation and considerations about fundamental periods of damaged reinforced concrete buildings. Nat Hazards Earth Syst Sci 13(7):1903–1912

    Article  Google Scholar 

  • Dubertret L (1945) Géologie du site de Beyrouth avec carte géologique au 1/20.000, 1945

  • Dunand F (2005) Pertinence du bruit de fond sismique pour la caractérisation dynamique et l’aide au diagnostic sismique des structures de génie civil. PhD thesis, Université Joseph-Fourier-Grenoble I

  • Dunand F, Bard P-Y, Chatelain J, Guéguen P, Vassail T, Farsi M (2002) Damping and frequency from randomdec method applied to in situ measurements of ambient vibrations. Evidence for effective soil structure interaction. In: 12th European conference on earthquake engineering, London

  • Dunand F, Ait Meziane Y, Guéguen P, Chatelain J-L, Guillier B, Ben Salem R, Hadid M, Hellel M, Kiboua A, Laouami N (2004) Utilisation du bruit de fond pour l’analyse des dommages des bâtiments de Boumerdes suite au séisme du 21 mai 2003. Mémoires du Service Géologique de l’Algérie, 12:177–191

  • Elias A, Tapponnier P, Singh SC, King GC, Briais A, Daëron M, Carton H, Sursock A, Jacques E, Jomaa R (2007) Active thrusting offshore Mount Lebanon: source of the tsunamigenic ad 551 Beirut–Tripoli earthquake. Geology 35(8):755–758

    Article  Google Scholar 

  • Enomoto T, Navarro M, Sánchez F, Vidal F, Seo K, Luzón F, García J, Martín J, Romacho M (1999) Evaluación del comportamiento de los edificios en Almería mediante el análisis del ruido ambiental. 1a Asamblea Hispano-Lusa. Aguadulce, Almería, Spain

  • Enomoto T, Schmitz M, Abeki N, Masaki K, Navarro M, Rocavado V, Sanchez A (2000) Seismic risk assessment using soil dynamics in Caracas. Venezuela. 12th WCEE, CD-ROM

  • Espinoza F (1999) Determinación de características dinámicas de estructuras. PhD thesis, Universidad Politécnica de Catalunya

  • Eurocode 8 (2004) Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings, European Committee for Standardization (CEN), EN 1998-1. www.eurocodes.jrc.eceuropa.eu/. Last accessed Feb 2016

  • Fardis MN, Carvalho E, Alnashai A, Faccioli E, Pinto P, Plumier A (2009) Designers’ guide to EN 1998-1 and 1998-5. Eurocode 8: design provisions for earthquake resistant structures. Thomas Telford Limited, London

  • Farrar CR, Doebling SW, Nix DA (2001) Vibration-based structural damage identification. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 359(1778):131–149

    Article  Google Scholar 

  • Farsi MN (1996) Identification des structures de Génie Civil à partir de leurs réponses vibratoires et vulnérabilité du bâti existant. PhD thesis, Springer, Netherlands

  • Farsi MN, Bard P-Y (2004) Estimation des périodes propres de bâtiments et vulnérabilité du bâti existant dans l’agglomération de Grenoble. Revue Française de Génie Civil 8(2–3):149–179

    Article  Google Scholar 

  • Farsi MN, Guillier B, Chatelain J-L, Zermout S-A (2009) Retrofitting and strengthening evaluation from stiffness variations of a damaged building from ambient vibration recordings. In: Increasing seismic safety by combining engineering technologies and seismological data. Springer, pp 227–238

  • FEMA (1999) HAZUS 99 – Earthquake loss estimation methodology. Technical Manual, Federal Emergency Management Agency, Washington, DC

  • Gallipoli MR, Mucciarelli M, Vona M (2009) Empirical estimate of fundamental frequencies and damping for Italian buildings. Earthquake Eng Struct Dynam 38(8):973–988

    Article  Google Scholar 

  • Gallipoli M, Mucciarelli M, Šket-Motnikar B, Zupanćić P, Gosar A, Prevolnik S, Herak M, Stipčević J, Herak D, Milutinović Z (2010) Empirical estimates of dynamic parameters on a large set of European buildings. Bull Earthq Eng 8(3):593–607

    Article  Google Scholar 

  • Gates W, Foth V (1978) Building period correlation. Report to the applied technology council, Palo Alto

  • Gilles D, McClure G (2008) Development of a period database for buildings in Montreal using ambient vibrations. In: Proceedings of the 14th world conference on earthquake engineering

  • Gomez F, Meghraoui M, Darkal AN, Hijazi F, Mouty M, Suleiman Y, Sbeinati R, Darawcheh R, Al-Ghazzi R, Barazangi M (2003) Holocene faulting and earthquake recurrence along the Serghaya branch of the dead sea fault system in Syria and Lebanon. Geophys J Int 153(3):658–674

    Article  Google Scholar 

  • Guéguen P (2000) Interaction sismique entre le sol et le bâti: de l’Interaction Structure-Sol-Structure à l’Interaction Site-Ville. PhD thesis, Thèse, Université Joseph Fourier, Grenoble

  • Guillier B, Atakan K, Chatelain JL, Havskov J, Ohrnberger M, Cara F, Duval AM, Zacharopoulos S, Teves-Costa P, SESAME Team (2008) Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng 6(1):3–31

    Article  Google Scholar 

  • Guillier B, Chatelain J-L, Tavera H, Perfettini H, Ochoa A, Herrera B (2014) Establishing empirical period formula for RC buildings in Lima, Peru: evidence for the impact of both the 1974 Lima earthquake and the application of the peruvian seismic code on high-rise buildings. Seismol Res Lett 85(6):1308–1315

    Article  Google Scholar 

  • Guler K, Yuksel E, Kocak A (2008) Estimation of the fundamental vibration period of existing RC buildings in turkey utilizing ambient vibration records. J Earthquake Eng 12(S2):140–150

    Article  Google Scholar 

  • Gutenberg B (1958) Microseisms. Adv Geophys 5:53–92

    Article  Google Scholar 

  • Haghshenas E, Bard P-Y, Theodulidis N, Team SW et al (2008) Empirical evaluation of microtremor h/v spectral ratio. Bull Earthq Eng 6(1):75–108

    Article  Google Scholar 

  • Harb J (2003) Risks of liquefaction in the greater Beirut area. In: Culligan PJ, Einstein HH, Whittle AJ (eds) Soil rock America 2003, 12th Panamerican conference on soil mechanics and geotechnical engineering and 39th U.S. Rock mechanics symposium. VGE, vol 1

  • Hatzigeorgiou GD, Kanapitsas G (2013) Evaluation of fundamental period of low-rise and mid-rise reinforced concrete buildings. Earthquake Eng Struct Dynam 42(11):1599–1616

    Article  Google Scholar 

  • Herak M, Herak D (2009) Recent measurements of ambient vibrations in free-field and in buildings in Croatia. In: Coupled site and soil–structure interaction effects with application to seismic risk mitigation. Springer, Netherlands, pp 293–304

  • Hong L-L, Hwang W-L (2000) Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthquake Eng Struct Dynam 29:327–337

    Article  Google Scholar 

  • Housner GW, Brady AG (1963) Natural periods of vibration of buildings. J Eng Mech Div 89(4):31–68

    Google Scholar 

  • Irie Y, Nakamura K (2000) Dynamic characteristics of an RC building of five stories based on microtremor measurements and earthquake observations. In: 12th world conference of earthquake engineering (WCEE), Auckland, Australia

  • Khair K, Karakaisis G, Papadimitriou E (2000) Seismic zonation of the Dead Sea transform fault area. Ann Geophys 43(1):61–79

    Google Scholar 

  • Kobayashi H, Midorikawa S, Tanzawa H, Matsubara M (1987) Development of portable measurement system for ambient vibration test of building. J Struct Constr Eng Trans Arch Inst of Jpn 378:48–56

    Google Scholar 

  • Kobayashi H, Vidal F, Feriche D, Samano T, Alguacil G (1996) Evaluation of dynamic behaviour of building structures with microtremors for seismic microzonation mapping. In: The 11th WCEE, Acapulco, Mexico

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88(1):228–241

    Google Scholar 

  • Lachet C, Bard P-Y (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42(5):377–397

    Article  Google Scholar 

  • Lagomarsino S (1993) Forecast models for damping and vibration periods of buildings. J Wind Eng Ind Aerodyn 48(2):221–239

    Article  Google Scholar 

  • Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443

    Article  Google Scholar 

  • Lebanese Decree 14293 (2005) Requirements and conditions for buildings, installations, and elevators for the protection against fires and earthquakes. http://www.doingbusiness.org/law-library/lebanon

  • Lebanese Decree 646 (2004) The Official Gazette, No. 66, 12007–12034. http://www.lp.gov.lb/Temp/Files/663b0c63-4584-4654-894b-ee73c0cc9f98.doc. Last accessed Feb 2016

  • Lee L-H, Chang K-K, Chun Y-S (2000) Experimental formula for the fundamental period of RC buildings with shear-wall dominant systems. Struct Des Tall Build 9(4):295–307

    Article  Google Scholar 

  • Luco J, Trifunac M, Wong H (1987) On the apparent change in dynamic behavior of a nine-story reinforced concrete building. Bull Seismol Soc Am 77(6):1961–1983

    Google Scholar 

  • McVerry GH, Beck JL (1983) Structural identification of JPL building 180 using optimally synchronized earthquake records. Report No EERL 83-01, Pasadena, California

  • Meli R, Faccioli E, Murià-Vila D, Quaas R, Paolucci R (1998) A study of site effects and seismic response of an instrumented building in Mexico City. J Earthquake Eng 2(01):89–111

    Google Scholar 

  • Messele H, Tadese K (2002) The study of seismic behaviour buildings located on different site in Addis Ababa (Ethiopia) by using microtremors and analytical procedure. Joint study on microtremors and seismic microzonation in earthquake countries. In: Workshop to exchange research information, Hakone-Gora, Kanagawa, Japan

  • Michel C (2007) Vulnérabilité Sismique de l’échelle du bâtiment à celle de la ville-Apport des techniques expérimentales in situ-Application à Grenoble. PhD thesis, Université Joseph-Fourier-Grenoble I

  • Michel C, Guéguen P (2010) Time–frequency analysis of small frequency variations in civil engineering structures under weak and strong motions using a reassignment method. Struct Health Monit 9(2):159–171

    Article  Google Scholar 

  • Michel C, Guéguen P, Lestuzzi P, Bard P-Y (2010) Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France. Bull Earthq Eng 8(6):1295–1307

    Article  Google Scholar 

  • Midorikawa S, Jigyodan KK (1990) Ambient vibration tests of buildings in Santiago and Vinã del Mar. Departamento de Ingeniería Estructural, Pontificia Universidad Católica de Chile

  • Mikael A, Guéguen P, Bard P-Y, Roux P, Langlais M (2013) The analysis of long-term frequency and damping wandering in buildings using the random decrement technique. Bull Seismol Soc Am 103(1):236–246

    Article  Google Scholar 

  • Milutinovic ZV, Trendafiloski GS (2003) Wp4: vulnerability of current buildings. RISK-UE project of the EC: an advanced approach to earthquake risk scenarios with applications to different European towns

  • Mucciarelli M, Gallipoli MR (2001) A critical review of 10 years of microtremor HVSR technique. Boll Geof Teor Appl 42(3–4):255–266

    Google Scholar 

  • Mucciarelli M, Masi A, Gallipoli MR, Harabaglia P, Vona M, Ponzo F, Dolce M (2004) Analysis of RC building dynamic response and soil-building resonance based on data recorded during a damaging earthquake (Molise, Italy, 2002). Bull Seismol Soc Am 94(5):1943–1953

    Article  Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw Tech Res Inst Q Rep 30(1):25–33

    Google Scholar 

  • National building code of Canada (NBCC) (2005). http://www.nrc-cnrc.gc.ca. Last accessed February 2016

  • Navarro M, Oliveira CS (2004) Evaluation of dynamic characteristics of reinforced concrete buildings in the city of Lisbon. In: Proceedings of the 4th assembly of the Portuguese–Spanish of geodesy and geophysics, Figueira da Foz, Portugal

  • Navarro M, Sánchez F, Feriche M, Vidal F, Enomoto T, Iwatate T, Matsuda I, Maeda T (2002) Statistical estimation for dynamic characteristics of existing buildings in Granada, Spain, using microtremors. Struct Dyn Eurodyn 1:807–812

    Google Scholar 

  • Navarro M, Vidal F, Enomoto T, Alcalá F, Sánchez F, Abeki N (2007) Analysis of site effects weightiness on RC building seismic response. The Adra (Spain) example. Earthquake Eng Struct Dynam 36:1363–1383

    Article  Google Scholar 

  • Oliveira CS (2004) Actualizaçaõ das bases-de-dados sobre frequências próprias de estruturas de edifícios, pontes, viadutos e passagens de peões a partir de medições expeditas in situ. In: 5th Portuguese conference on earthquake engineering, University of Minho, Guimarães (in Portuguese)

  • Oliveira CS, Navarro M (2010) Fundamental periods of vibration of RC buildings in Portugal from in situ experimental and numerical techniques. Bull Earthq Eng 8(3):609–642

    Article  Google Scholar 

  • Pan T-C, Goh KS, Megawati K (2014) Empirical relationships between natural vibration period and height of buildings in Singapore. Earthquake Eng Struct Dynam 43(3):449–465

    Article  Google Scholar 

  • Priestley M, Calvi G, Kowalsky M (2007) Direct displacement-based seismic design of structures. In: 2007 NZSEE conference

  • PS92 (1995) Règles de construction parasismique, DTU règles

  • RPA88 (1988) Règles parasismiques algériennes. Régulation of Algerian Seismic Code, Publication OPU, Algiers,

  • Ruppert H (1969) Beyrouth, une ville d’Orient marquée par l’Occident. Number 21. Centre d’Etudes de et Recherches sur le Moyen- Orient Contemporain

  • Salameh C, Mariscal A, Harb J, Bard P-Y, Guillier B, Cornou C, Voisin C (2014) Dynamic properties of Beirut buildings: instrumental results from ambient vibrations. In: 2nd European conference of earthquake engineering and seismology

  • Salloum N, Jongmans D, Cornou C, Massih DYA, Chehade FH, Voisin C, Mariscal A (2014) The shear wave velocity structure of the heterogeneous alluvial plain of Beirut (Lebanon): combined analysis of geophysical and geotechnical data. Geophys J Int 199(2):894–913

    Article  Google Scholar 

  • Sanchez F, Navarro M, García J, Enomoto T, Vidal F (2002) Evaluation of seismic effects on buildings structures using microtremor measurements and simulation response. Struct Dyn Eurodyn 2002(2):1003–1008

    Google Scholar 

  • Satake N, Yokota H (1996) Evaluation of vibration properties of high-rise steel buildings using data of vibration tests and earthquake observations. J Wind Eng Ind Aerodyn 59(2):265–282

    Article  Google Scholar 

  • Satake N, Suda K-I, Arakawa T, Sasaki A, Tamura Y (2003) Damping evaluation using full-scale data of buildings in Japan. J Struct Eng 129(4):470–477

    Article  Google Scholar 

  • SIA (2003) Swiss code, actions on structures. Swiss Society of Engineers and Architects

  • Todorovska MI (2009a) Seismic interferometry of a soil-structure interaction model with coupled horizontal and rocking response. Bull Seismol Soc Am 99(2A):611–625

    Article  Google Scholar 

  • Todorovska MI (2009b) Soil-structure system identification of millikan library north–south response during four earthquakes (1970–2002): what caused the observed wandering of the system frequencies? Bull Seismol Soc Am 99(2A):626–635

    Article  Google Scholar 

  • Trifunac MD (1972) Comparisons between ambient and forced vibration experiments. Earthquake Eng Struct Dynam 1(2):133–150

    Article  Google Scholar 

  • Ulm F, Clément J, Argoul P (1993) Coefficient de comportement: approche chute de fréquence. In: 3ème Colloque National AFPS, vol 2, pp 49–56

  • Uniform Building Code (UBC) (1997) International conference of building officials, USA

  • Vidal F, Navarro M, Aranda C, Enomoto T (2014) Changes in dynamic characteristics of Lorca RC buildings from pre-and post-earthquake ambient vibration data. Bull Earthq Eng 12(5):2095–2110

    Article  Google Scholar 

  • Warnitchai P (2004) Development of seismic design requirements for buildings in Bangkok against the effects of distant large earthquakes. In: Proceedings of the 13th world conference on earthquake engineering, Vancouver

  • Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys Res Lett. doi:10.1029/2008GL033256

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Libris research program (ANR RiskNat 2009-006) in collaboration between the laboratories ISTerre (Grenoble, France), Lebanese Geophysical Research Center (CRG), Saint-Joseph University of Beirut, Notre Dame University-Louaizé NDU, IPGP, EDYTEM, CETE, and is partially funded by IRD (Institut de Recherche pour le Développement). The authors would like to thank the municipalities of Jdeideh and Bourj Hammoud for their help in the access to the buildings, Jocelyne Gérard, Rita Zaarour and Nada Saliba for making use of the building inventory database and the Labex OSUG@2020 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Salameh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salameh, C., Guillier, B., Harb, J. et al. Seismic response of Beirut (Lebanon) buildings: instrumental results from ambient vibrations. Bull Earthquake Eng 14, 2705–2730 (2016). https://doi.org/10.1007/s10518-016-9920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9920-9

Keywords

Navigation