Skip to main content
Log in

Site-specific partially nonergodic PSHA for a hard-rock critical site in southern France: adjustment of ground motion prediction equations and sensitivity analysis

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Modern probabilistic seismic hazard assessment (PSHA) focuses on the separation and different treatment of epistemic and aleatory uncertainties. Recent site-specific PSHA studies have pointed out that, if the site response and its epistemic uncertainties can be appropriately considered by adjustments to median estimates from ground motion prediction equations (GMPEs), the aleatory variability (sigma) of the GMPEs can be replaced by the single-station sigma thus partially relaxing the ergodic assumption employed in the PSHA. The site-specific partially nonergodic approach, correctly applied, provides a more accurate representation of the seismic hazard at a specific site and a more rigorous treatment of uncertainties. This paper presents the strategy followed to apply this relatively recent approach to a critical infrastructure in Southern France located on hard-rock site conditions (Vs30 ≈ 2000 m/s). The target site conditions are defined in terms of shear-wave velocity (Vs) profiles and high-frequency attenuation (κ0) based on the results of site investigations and on the exploitation of earthquake records at seismic stations in the target site area. The host-to-target Vs-κ0 adjustment of median estimates for the selected GMPEs is performed by using the inverse random vibration theory approach (Al Atik et al. in Bull Seismol Soc Am 104:336–346, 2014) considering epistemic uncertainties in target Vs profile and κ0. The single-station sigma model is developed based on Rodriguez-Marek et al. (Bull Seismol Soc Am 104:1601–1619, 2013) due to the lack of local data. The results of the site-specific partially nonergodic PSHA are discussed by means of a sensitivity analysis and are compared to the results from standard ergodic PSHA. We found that, for the considered site, the site-specific approach provides a substantial reduction (up to 50%) of the uniform hazard spectra at 10,000-year return period compared to the ergodic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akkar S, Sandikkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387

    Article  Google Scholar 

  • Al Atik L, Kottke A, Abrahamson N, Hollenback J (2014) Kappa (κ) scaling of ground-motion prediction equations using an inverse random vibration theory approach. Bull Seismol Soc Am 104:336–346

    Article  Google Scholar 

  • Ameri G (2014) Empirical ground motion model adapted to the French context. Deliverable SIGMA: SIGMA-2014-D2-131

  • Ameri G, Drouet S, Traversa P, Bindi D, Cotton F (2017) Toward an empirical ground motion prediction equation for metropolitan France: accounting for regional differences in the source stress parameter. Bull Earthq Eng (Submitted)

  • Anderson J (1991) A preliminary descriptive model for the distance-dependence of the spectral decay parameter in southern California. Bull Seismol Soc Am 81(6):2186–2193

    Google Scholar 

  • Anderson JG, Brune JN (1999) Probabilistic seismic hazard assessment without the ergodic assumption. Seismol Res Lett 70:19–28

    Article  Google Scholar 

  • Anderson JG, Hough SE (1984) A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74:1969–1993

    Google Scholar 

  • Atkinson G (2006) Single-station sigma. Bull Seismol Soc Am 96:446–455

    Article  Google Scholar 

  • Barani S, Spallarossa D (2016) – Soil amplification in probabilistic ground motion hazard analysis. Bull Earthq Eng. doi:10.1007/s10518-016-9971-y

    Google Scholar 

  • Beauval C, Tasan H, Laurendeau A, Delavaud E, Cotton F, Guéguen P, Kuehn N (2012) On the testing of ground-motion prediction equations against small-magnitude data. Bull Seismol Soc Am 102:1994–2007. doi:10.1785/0120110271

    Article  Google Scholar 

  • Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2014) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12(1):391–430

    Article  Google Scholar 

  • Biro Y, Renault P (2012) Importance and impact of host-to-target conversions for ground motion prediction equations in PSHA. In: Proceeding 15th World Conference of Earthquake Engineering, Lisbon, Portugal, 24–28 September, 10pp

  • Bommer JJ, Stafford PJ, Alarcón JE (2009) Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bull Seismol Soc Am 99:3217–3233

    Article  Google Scholar 

  • Bommer JJ, Coppersmith KJ, Coppersmith RT, Hanson KL, Mangongolo A, Neveling J, Rathje EM, Rodriguez-Marek A, Scherbaum F, Shelembe R, Stafford PJ, Strasser FO (2015) A SSHAC level 3 probabilistic seismic hazard analysis for a new-build nuclear site in South Africa. Earthq Spectra 31(2):661–698

    Article  Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure appl Geophys 160:635–675

    Article  Google Scholar 

  • Boore DM (2013) The uses and limitations of the square-root impedance method for computing site amplification. Bull Seismol Soc Am 103:2356–2368

    Article  Google Scholar 

  • Boore DM (2016) Determining generic velocity and density models for crustal amplification calculations, with an update of the Boore and Joyner (1997) generic site amplification for V S (Z) = 760 m/s. Bull Seismol Soc Am 106:316–320

    Article  Google Scholar 

  • Boore DM, Joyner WB (1997) Site amplifications for generic rock sites. Bull Seismol Soc Am 87:327–341

    Google Scholar 

  • Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes. Earthq Spectra 30:1057–1085

    Article  Google Scholar 

  • Bora SS, Scherbaum F, Kuehn N, Stafford P, Edwards B (2015) Development of a response spectral ground-motion prediction equation (GMPE) for seismic-hazard analysis from empirical fourier spectral and duration models. Bull Seismol Soc Am 105(4):2192–2218

    Article  Google Scholar 

  • Campbell KW (2003) Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground motion (attenuation) relations in eastern North America. Bull Seismol Soc Am 93:1012–1033

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5%-damped linear acceleration response spectra. Earthq Spectra 30(3):1087–1115

    Article  Google Scholar 

  • Cartwright D, Longuet-Higgins M (1956) The statistical distribution of the maxima of a random function. Proc R Soc Lond Math Phys Sci 237(1209):212–232

    Article  Google Scholar 

  • Cauzzi C, Faccioli E, Vanini M, Bianchini A (2015) Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthq Eng 13(6):1587–1612

    Article  Google Scholar 

  • Chen L, Faccioli E (2013) Single-station standard deviation analysis of 2010–2012 strong-motion data from the Canterbury region, New Zealand. Bull Earthq Eng 11:1617–1632

    Article  Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10:137–156. doi:10.1007/s10950-005-9006-7

    Article  Google Scholar 

  • Cushing EM, Bellier O, Nechtschein S, Sébrier M, Lomax A, Volant Ph, Dervin P, Guignard P, Bove L (2008) A multidisciplinary study of a slow-slipping fault for seismic hazard assessment: the example of the Middle Durance Fault (SE France). Geophys J Int 172:1163–1178. doi:10.1111/j.1365-246X.2007.03683.x

    Article  Google Scholar 

  • Douglas J, Gehl P, Bonilla LF, Gélis C (2010) A κ model for mainland France. Pure appl Geophys 167:1303–1315. doi:10.1007/s00024-010-0146-5

    Article  Google Scholar 

  • Drouet S, Cotton F, Guéguen P (2010) VS30, κ, regional attenuation and Mw from small magnitude events accelerograms. Geophys J Int 182:880–898

    Article  Google Scholar 

  • Edwards B, Cauzzi C, Danciu L, Fäh D (2016) Region-specific assessment, adjustment and weighting of ground motion prediction models: application to the 2015 Swiss Seismic Hazard Maps. Bull Seismol Soc Am. doi:10.1785/0120150367

    Google Scholar 

  • Faccioli E, Paolucci R, Vanini M (2015) Evaluation of probabilistic site-specific seismic-hazard methods and associated uncertainties, with applications in the Po Plain, Northern Italy. Bull Seismol Soc Am 105:2787–2807

    Article  Google Scholar 

  • Garofalo F, Foti S, Hollender F, Bard PY, Cornou C, Cox BR, Ohrnberger M, Sicilia D, Asten M, Di Giulio G, Forbriger T, Guillier B, Hayashi K, Martin A, Matsushima S, Mercerat D, Poggi V, Yamanaka H (2016a) InterPACIFIC project: comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods. Soil Dyn Earthq Eng 82:222–240

    Article  Google Scholar 

  • Garofalo F, Foti S, Hollender F, Bard PY, Cornou C, Cox BR, Dechamp A, Ohrnberger M, Perron V, Sicilia D, Teague D, Vergniault C (2016b) InterPACIFIC project: comparison of invasive and non-invasive methods for seismic site characterization. Part II: Inter-comparison between surface-wave and borehole methods. Soil Dyn Earthq Eng 82:241–254

    Article  Google Scholar 

  • Gasparini DA, Vanmarcke EH (1976) SIMQKE: Simulated earthquake motions compatible with prescribed response spectra, Department of Civil Engineering, Research Report R76-4. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Gregor N, Abrahamson NA, Atkinson GM, Boore DM, Bozorgnia Y, Campbell KW, Chiou BSJ, Idriss IM, Kamai R, Seyhan E, Silva W, Stewart JP, Youngs R (2014) Comparison of Nga-West2 GMPEs. Earthq Spectra 30:1179–1197

    Article  Google Scholar 

  • Hanks TC (1982) fmax. Bull Seismol Soc Am 72:1867–1879

    Google Scholar 

  • Joyner WB, Warrick RE, Fumal TE (1981) The effect of Quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979. Bull Seismol Soc Am 71:1333–1349

    Google Scholar 

  • Kotha SR, Bindi D, Cotton F (2016) Partially nonergodic region specific GMPE for Europe and Middle-East. Bull Earthq Eng 14(4):1245–1263

    Article  Google Scholar 

  • Ktenidou O-J, Gélis C, Bonilla L-F (2013) A study on the variability of kappa (κ) in a borehole: implications of the computation process. Bull Seismol Soc Am 103(2A):1048–1068

    Article  Google Scholar 

  • Ktenidou O-J, Cotton F, Abrahamson N, Anderson J (2014) Taxonomy of kappa: a review of definitions and estimation approaches targeted to applications. Seismol Res Lett. doi:10.1785/0220130027

    Google Scholar 

  • Kuehn NM, Scherbaum F (2016) A partially nonergodic ground-motion prediction equation for Europe and the Middle East. Bull Earthq Eng. doi:10.1007/s10518-016-9911-x

    Google Scholar 

  • Lanzano G, D’Amico M, Felicetta C, Puglia R, Luzi L, Pacor F, Bindi D (2016) Ground-motion prediction equations for region-specific probabilistic seismic-hazard analysis. Bull Seismol Soc Am 106:73–92

    Article  Google Scholar 

  • Lanzano G, Pacor F, Luzi L, D’Amico M, Puglia R, Felicetta C (2017) Empirical region-specific ground motion variability: the case study of Northern Italy. Bull Earthq Eng (in press)

  • Lin P-S, Chiou B, Abrahamson N, Walling M, Lee C-T, Cheng C-T (2011) Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models. Bull Seismol Soc Am 101(5):2281–2295

    Article  Google Scholar 

  • Luzi L, Bindi D, Puglia R, Pacor F, Oth A (2014) Single-Station Sigma for Italian Strong-Motion Stations. Bull Seismol Soc Am 104(1):467–483

    Article  Google Scholar 

  • Ordaz M, Martinelli F, D’Amico V, Meletti C (2013) Crisis 2008: a flexible tool to perform probabilistic seismic hazard assessment. Seismol Res Lett 84:495–504

    Article  Google Scholar 

  • Perron V, Hollender F, Bard P-Y, Gélis C, Guyonnet-Benaize C, Hernandez B, Ktenidou O-J (2017) Site-specific estimation of kappa in the low-to-moderate seismicity context of Provence, France. Bull Seismol Soc Am (submitted)

  • Rathje EM, Kottke AR, Ozbey MC (2005) Using inverse random vibration theory to develop input Fourier amplitude spectra for use in site response. In: 16th international conference on soil mechanics and geotechnical engineering: TC4 earthquake geotechnical engineering satellite conference, Osaka, Japan, 12–16 September, 160–166

  • Renault P (2014) Approach and challenges for the seismic hazard assessment of nuclear power plants: the Swiss experience. Bollettino di Geofisica Teorica ed Applicata 55(1):149–164

    Google Scholar 

  • Rodriguez-Marek A, Montalva GA, Cotton F, Bonilla F (2011) Analysis of single-station standard deviation using the KiK-net data. Bull Seismol Soc Am 101:1242–1258

    Article  Google Scholar 

  • Rodriguez-Marek A, Cotton F, Abrahamson NA, Akkar S, Al Atik L, Edwards B, Montalva GA, Dawood HM (2013) A model for single-station standard deviation using data from various tectonic regions. Bull Seismol Soc Am. doi:10.1785/0120130030

    Google Scholar 

  • Rodriguez-Marek A, Rathje EM, Stafford PJ, Scherbaum F, Bommer JJ (2014) Application of single-station sigma and site response analyses in a probabilistic seismic hazard analysis for a new nuclear site. Bull Seismol Soc Am 104:1601–1619

    Article  Google Scholar 

  • Swissnuclear, 2014 [Renault P, Abrahamson N et al.]. “PEGASOS Refinement Project: Volume 4 –SP2 – Ground Motion Characterization”. http://www.swissnuclear.ch/en/downloads-_content—1–1058.html

  • Van Houtte C, Drouet S, Cotton F (2011) Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bull Seismol Soc Am 101(6):2926–2941

    Article  Google Scholar 

  • Van Houtte C, Ktenidou O-J, Larkin T, Holden C (2014) Hard-site κ0 (Kappa) calculations for Christchurch, New Zealand, and comparison with local ground-motion prediction models. Bull Seismol Soc Am 104:1899–1913

    Article  Google Scholar 

  • Villani M, Abrahamson NN (2015) Repeatable site and path effects on the ground-motion sigma based on empirical data from Southern California and simulated waveforms from the CyberShake Platform. Bull Seismol Soc Am 105:2681–2695

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) and by the SeIsmic Ground-Motion Assessment (SIGMA) Project (funded by EDF, AREVA, CEA and ENEL). Discussion with SIGMA project scientific committee and participants is greatly acknowledged. We thank Simone Barani and one anonymous reviewer whose comments led to improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Ameri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameri, G., Hollender, F., Perron, V. et al. Site-specific partially nonergodic PSHA for a hard-rock critical site in southern France: adjustment of ground motion prediction equations and sensitivity analysis. Bull Earthquake Eng 15, 4089–4111 (2017). https://doi.org/10.1007/s10518-017-0118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0118-6

Keywords

Navigation