Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs

Abstract

Large igneous provinces and some hotspot volcanoes are thought to form above thermochemical anomalies known as mantle plumes. Petrologic investigations that support this model suggest that plume-derived melts originated at high mantle temperatures (greater than 1,500 °C) relative to those generated at ambient mid-ocean ridge conditions (about 1,350 °C). Earth’s mantle has also cooled appreciably during its history and the temperatures of modern mantle derived melts are substantially lower than those produced during the Archaean (2.5 to 4.0 billion years ago), as recorded by komatiites (greater than 1,700 °C). Here we use geochemical analyses of the Tortugal lava suite to show that these Galapagos-Plume-related lavas, which formed 89 million years ago, record mantle temperatures as high as Archaean komatiites and about 400 °C hotter than the modern ambient mantle. These results are also supported by highly magnesian olivine phenocrysts and Al-in-olivine crystallization temperatures of 1,570 ± 20 °C. As mantle plumes are chemically and thermally heterogeneous, we interpret these rocks as the result of melting the hot core of the plume head that produced the Caribbean large igneous province. Our results imply that a mantle reservoir as hot as those responsible for some Archaean lavas has survived eons of convection in the deep Earth and is still being tapped by mantle plumes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locations of classic komatiites, hotspot lavas, and the frequency distribution of their olivine Mg-numbers.
Figure 2: Global olivine systematics and Al-in-olivine thermometry for komatiites and the hottest Phanerozoic olivines.
Figure 3: Tortugal olivines record the hottest crystallization temperatures relative to high-MgO Phanerozoic melts and Archaean komatiites.
Figure 4: Primary melt petrologic modelling of hot Phanerozoic lavas.
Figure 5: Correlation between two independent thermometers suggests the preservation of deep, hot Archaean mantle reservoirs.

Similar content being viewed by others

References

  1. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  Google Scholar 

  2. Herzberg, C. & Gazel, E. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–623 (2009).

    Article  Google Scholar 

  3. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  4. Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–811 (2016).

    Article  Google Scholar 

  5. Herzberg, C. & Asimow, P. D. PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 16, 563–578 (2015).

    Article  Google Scholar 

  6. Putirka, K. Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe–Mg exchange, and mantle potential temperature. Am. Mineral. 101, 819–840 (2016).

    Article  Google Scholar 

  7. Putirka, K. D., Perfit, M., Ryerson, F. J. & Jackson, M. G. Ambient and excess mantle temperatures, olivine thermometry, and active versus passive upwelling. Chem. Geol. 241, 177–206 (2007).

    Article  Google Scholar 

  8. Herzberg, C. Depth and degree of melting of Komatiites. J. Geophys. Res. 97, 4521–4540 (1992).

    Article  Google Scholar 

  9. Arndt, N. Why was flood volcanism on submerged continental platforms so common in the precambrian? Precambrian Res. 97, 155–164 (1999).

    Article  Google Scholar 

  10. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    Article  Google Scholar 

  11. Berry, A. J., Danyushevsky, L. V., O’Neil, H. S. C., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–964 (2008).

    Article  Google Scholar 

  12. Parman, S. W., Grove, T. L., Dann, J. C. & de Wit, M. J. A subduction origin for komatiites and cratonic lithospheric mantle. South Afr. J. Geol. 107, 107–118 (2004).

    Article  Google Scholar 

  13. Grove, T. L. & Parman, S. Thermal evolution of the Earth as recorded by komatiites. Earth Planet. Sci. Lett. 219, 173–187 (2004).

    Article  Google Scholar 

  14. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  15. Echeverria, L. M. Komatiites from Gorgona Island, Colombia 199–210 (George Allen and Unwin, 1982).

    Google Scholar 

  16. Kerr, A. C. et al. The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints. Lithos 37, 245–260 (1996).

    Article  Google Scholar 

  17. Arndt, N., Kerr, A. C. & Tarney, J. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts. Earth Planet. Sci. Lett. 146, 289–301 (1997).

    Article  Google Scholar 

  18. Alvarado, G. E., Denyer, P. & Sinton, C. W. The 89 Ma Tortugal komatiitic suite, Costa Rica: implications for a common geological origin of the Caribbean and Eastern Pacific region from a mantle plume. Geology 25, 439–442 (1997).

    Article  Google Scholar 

  19. Herzberg, C. & O’Hara, M. J. Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 43, 1857–1883 (2002).

    Article  Google Scholar 

  20. Matzen, A. K., Baker, M. B., Beckett, J. R. & Stolper, E. M. Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J. Petrol. 52, 1243–1263 (2011).

    Article  Google Scholar 

  21. Coogan, L. A., Saunders, A. D. & Wilson, R. N. Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 368, 1–10 (2014).

    Article  Google Scholar 

  22. Wan, Z., Coogan, L. A. & Canil, D. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am. Mineral. 93, 1142–1147 (2008).

    Article  Google Scholar 

  23. Matthews, S., Shorttle, O. & Maclennan, J. The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry. Geochem. Geophys. Geosyst. 17, 4725–4752 (2016).

    Article  Google Scholar 

  24. Heinonen, J. S., Jennings, E. S. & Riley, T. R. Crystallisation temperatures of the most Mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chem. Geol. 411, 26–35 (2015).

    Article  Google Scholar 

  25. Sobolev, A. V. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016).

    Article  Google Scholar 

  26. Sobolev, A. et al. How Hot and Wet are Mantle Derived Magmas and Their Sources? abstr. DI51C-04 (AGU Fall Meeting, American Geophysical Union, 2015).

    Google Scholar 

  27. Maurel, C. & Maurel, P. Etude experimentale de la distribution du ferrique entre spinelle chromifere et bain silicate basique. Bull. Mineral. 107, 25–33 (1984).

    Google Scholar 

  28. Danyushevsky, L. V. & Sobolev, A. V. Ferric-ferrous ratio and oxygen fugacity calculations for primitive mantle-derived melts: calibration of an empirical technique. Mineral. Petrol. 57, 229–241 (1996).

    Article  Google Scholar 

  29. Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).

    Article  Google Scholar 

  30. Dixon, J. E., Leist, L., Langmuir, C. H. & Schilling, J.-G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).

    Article  Google Scholar 

  31. Michael, P. J. & Graham, D. W. The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts. Lithos 236–237, 338–351 (2015).

    Article  Google Scholar 

  32. Herzberg, C. Petrological evidence from komatiites for an early Earth carbon and water cycle. J. Petrol. 57, 2271–2288 (2016).

    Article  Google Scholar 

  33. Madrigal, P., Gazel, E., Flores, K. E., Bizimis, M. & Jicha, B. Record of massive upwellings from the Pacific large low shear velocity province. Nat. Commun. 7, 13309 (2016).

    Article  Google Scholar 

  34. Trela, J. et al. Recycled crust in the Galápagos Plume source at 70 Ma: implications for plume evolution. Earth Planet. Sci. Lett. 425, 268–277 (2015).

    Article  Google Scholar 

  35. Hirose, K., Fei, Y. W., Ma, Y. Z. & Mao, H. K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999).

    Article  Google Scholar 

  36. Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article  Google Scholar 

  37. Hofmann, A. W. & Hart, S. R. Assessment of local and rgional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett. 38, 44–62 (1978).

    Article  Google Scholar 

  38. Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).

    Article  Google Scholar 

  39. Andrault, D., Monteux, J., Le Bars, M. & Samuel, H. The deep Earth may not be cooling down. Earth Planet. Sci. Lett. 443, 195–203 (2016).

    Article  Google Scholar 

  40. Spice, H. E., Fitton, G. & Kirstein, L. Temperature fluctuation of the Iceland mantle plume through time. Geochem. Geophys. Geosyst. 17, 243–254 (2016).

    Article  Google Scholar 

  41. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).

    Article  Google Scholar 

  42. Xu, R. & Liu, Y. Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province. Lithos 266–267, 362–366 (2016).

    Article  Google Scholar 

  43. Jicha, B. R. & Brown, F. H. An age on the Korath Range and the viability of 40Ar/39Ar dating of kaersutite in Late Pleistocene volcanics, Ethiopia. Quat. Geochronol. 21, 53–57 (2014).

    Article  Google Scholar 

  44. Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504 (2008).

    Article  Google Scholar 

  45. Min, K., Mundil, R., Renne, P. R. & Ludwig, K. R. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim. Cosmochim. Acta 64, 73–98 (2000).

    Article  Google Scholar 

  46. Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R. & Min, K. Response to the comment by W. H. Schwarz et al. on ‘Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology’ by P. R. Renne et al. (2010). Geochim. Cosmochim. Acta 75, 5097–5100 (2011).

    Article  Google Scholar 

  47. Jicha, B., Singer, B. S. & Sobol, P. Re-evaluation of the ages of 40Ar/39Ar sanidine standards and supereruptions in the western US using a Noblesse multicollector mass spectrometer. Chem. Geol. 431, 54–66 (2016).

    Article  Google Scholar 

  48. Johnson, D. M., Hooper, P. R. & Conrey, R. M. XRF Analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv. X-ray Anal. 41, 843–867 (1999).

    Google Scholar 

  49. Mazza, S. E. et al. Volcanoes of the passive margin: the youngest magmatic event in eastern North America. Geology 42, 483–486 (2014).

    Article  Google Scholar 

  50. Kelley, K. A., Plank, T., Ludden, J. & Staudigel, H. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem. Geophys. Geosyst. 4, 8910 (2003).

    Article  Google Scholar 

  51. White, W. M., Albarede, F. & Telouk, P. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem. Geol. 167, 257–270 (2000).

    Article  Google Scholar 

  52. Batanova, V. G., Sobolev, A. V. & Kuzmin, D. V. Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem. Geol. 419, 149–157 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by NSF awards EAR-12019033 and EAR-1565614 to E.G. The participation of A.V.S. and V.G.B. in the experimental heating of melt inclusions and analyses of olivine and spinel was funded by the Russian Science Foundation grant number 14-17-00491 and Institut Universitaire de France (to A.V.S.). S. Krasheninnikov and E. Asafov from Vernadsky Institute of Geochemistry performed heating and quenching of melt inclusions. We thank J. Heinonen and K. Putirka for their thorough review of our manuscript. Discussions with N. Arndt, C. Herzberg and P. Asimow improved this project and the final manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.G. planned the project and led field and analytical efforts. E.G. and J.T. produced the new data, compiled and modelled the geochemical data, developed the ideas, and wrote the manuscript. L.M. prepared melt inclusion samples, collected volatile data, performed mass balance calculations, and contributed to the writing of the paper. B.J. performed Ar–Ar age dating and data analysis. A.S., M.B. and V.B., collaborated on the project with data collection, analysis, and the development of ideas.

Corresponding author

Correspondence to Esteban Gazel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 13293 kb)

Supplementary Information

Supplementary Information (XLS 293 kb)

Supplementary Information

Supplementary Information (XLSX 1152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trela, J., Gazel, E., Sobolev, A. et al. The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nature Geosci 10, 451–456 (2017). https://doi.org/10.1038/ngeo2954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing