Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 8, 2016

The influence of pH and reaction time on the formation of FeSe2 upon selenite reduction by nano-sized pyrite-greigite

  • Mingliang Kang EMAIL logo , Fabrizio Bardelli , Bin Ma , Laurent Charlet , Fanrong Chen and Yongqiang Yang
From the journal Radiochimica Acta

Abstract

The influence of pH and reaction time on the formation of FeSe2 by reductive precipitation of Se(IV) with nano-sized pyrite-greigite was investigated. Reductive precipitation is an effective method of attenuating the mobility of 79Se, which is foreseen to be a dangerous radioisotope for the geological disposal of high-level radioactive waste (HLW). The results indicated that Se(0)was formed at pH <4.05, whereas, at pH > 6.07, considerable amount of FeSe2 was formed along with Se(0). These observations are in agreement with the thermodynamic predictions reported in this work. Furthermore, the formation of FeSe2 was found to continue by increasing the reaction time, indicating that the Se(0) formed in the early reaction stage is gradually transformed to FeSe2 upon the depletion of aqueous Se(IV). Since FeSe2 has a stronger reactivity than pyrite, it was proposed that greigite, rather than pyrite, was responsible for the formation of FeSe2. The findings in this study are of interest for key geochemical processes governing the mobility of toxic 79Se in the environment in presence of iron sulfides.

Acknowledgement

Funding for this research was provided by the National Natural Science Foundation of China (NSFC, No. 41403075), the Fundamental Research Funds for the Central Universities of Sun Yat-sen University (No. 201545000-31610011), and a collaborative project from Guangdong Provincial Key Laboratory of Mineral Physics and Materials (No. GLMPM-002).

References

1. Bienvenu, P., Cassette, P., Andreoletti, G., Be, M. M., Comte, J., Lepy, M. C.: A new determination of Se − 79 half-life. Appl. Radiat. Isot. 65, 355 (2007).10.1016/j.apradiso.2006.09.009Search in Google Scholar PubMed

2. Rovira, M., Gimenez, J., Martinez, M., Martinez-Llado, X., de Pablo, J., Marti, V., Duro, L.: Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. J. Hazard. Mater. 150, 279 (2008).10.1016/j.jhazmat.2007.04.098Search in Google Scholar PubMed

3. Saeki, K., Matsumoto, S., Tatsukawa, R.: Selenite adsorption by manganese oxides. Soil Sci. 160, 265 (1995).10.1097/00010694-199510000-00005Search in Google Scholar

4. Baryosef, B., Meek, D.: Selenium sorption by kaolinite and montmorillonite. Soil Sci. 144, 11 (1987).10.1097/00010694-198707000-00003Search in Google Scholar

5. Coppin, F., Chabroullet, C., Martin-Garin, A.: Selenite interactions with some particulate organic and mineral fractions isolated from a natural grassland soil. Eur. J. Soil Sci. 60, 369 (2009).10.1111/j.1365-2389.2009.01127.xSearch in Google Scholar

6. Scheinost, A. C., Kirsch, R., Banerjee, D., Fernandez-Martinez, A., Zaenker, H., Funke, H., Charlet, L.: X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals. J. Contam. Hydrol. 102, 228 (2008).10.1016/j.jconhyd.2008.09.018Search in Google Scholar PubMed

7. Scheinost, A. C., Charlet, L.: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ. Sci. Technol. 42, 1984 (2008).10.1021/es071573fSearch in Google Scholar PubMed

8. Han, D. S., Batchelor, B., Abdel-Wahab, A.: Sorption of selenium(IV) and selenium(VI) to mackinawite (FeS): effect of contact time, extent of removal, sorption envelopes. J. Hazard. Mater. 186, 451 (2011).10.1016/j.jhazmat.2010.11.017Search in Google Scholar PubMed

9. Myneni, S. C. B., Tokunaga, T. K., Brown, G. E.: Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science 278, 1106 (1997).10.1126/science.278.5340.1106Search in Google Scholar

10. Naveau, A., Monteil-Rivera, F., Guillon, E., Dumonceau, J.: Interactions of aqueous selenium(-II) and (IV) with metallic sulfide surfaces. Environ. Sci. Technol. 41, 5376 (2007).10.1021/es0704481Search in Google Scholar PubMed

11. Breynaert, E., Bruggeman, C., Maes, A.: XANES-EXAFS analysis of se solid-phase reaction products formed upon contacting Se(IV) with FeS2 and FeS. Environ. Sci. Technol. 42, 3595 (2008).10.1021/es071370rSearch in Google Scholar PubMed

12. Kang, M. L., Bardelli, F., Charlet, L., Gehin, A., Shchukarev, A., Chen, F. R., Morel, M. C., Ma, B., Liu, C. L.: Redox reaction of aqueous selenite with As-rich pyrite from Jiguanshan ore mine (China): reaction products and pathway. Appl. Geochem. 47, 130 (2014).10.1016/j.apgeochem.2014.05.018Search in Google Scholar

13. Kang, M. L., Chen, F. R., Wu, S. J., Yang, Y. Q., Bruggeman, C., Charlet, L.: Effect of pH on aqueous Se(IV) reduction by pyrite. Environ. Sci. Technol. 45, 2704 (2011).10.1021/es1033553Search in Google Scholar PubMed

14. Charlet, L., Scheinost, A. C., Tournassat, C., Greneche, J. M., Gehin, A., Fernandez-Martinez, A., Coudert, S., Tisserand, D., Brendle, J.: Electron transfer at the mineral/water interface: selenium reduction by ferrous iron sorbed on clay. Geochim. Cosmochim. Acta 71, 5731 (2007).10.1016/j.gca.2007.08.024Search in Google Scholar

15. Chakrabrty, S., Bardelli, F., Charlet, L.: Reactivities of Fe(II) on calcite: selenium reduction. Environ. Sci. Technol. 44, 1288 (2010).10.1021/es903037sSearch in Google Scholar PubMed

16. Hayashi, H., Kanie, K., Shinoda, K., Muramatsu, A., Suzuki, S., Sasaki, H.: pH-dependence of selenate removal from liquid phase by reductive Fe(II)−Fe(III) hydroxysulfate compound, green rust. Chemosphere 76, 638 (2009).10.1016/j.chemosphere.2009.04.037Search in Google Scholar PubMed

17. Ma, B., Kang, M. L., Zheng, Z., Chen, F. R., Xie, J. L., Charlet, L., Liu, C. L.: The reductive immobilization of aqueous Se(IV) by natural pyrrhotite. J. Hazard. Mater. 276, 422(2014).10.1016/j.jhazmat.2014.05.066Search in Google Scholar PubMed

18. Charlet, L., Kang, M. L., Bardelli, F., Kirsch, R., Géhin, A., Grenèche, J. M., Chen, F. R.: Nanocomposite pyrite-greigite reactivity toward Se(IV)/Se(VI). Environ. Sci. Technol. 46, 4869 (2012).10.1021/es204181qSearch in Google Scholar PubMed

19. Diener, A., Neumann, T., Kramar, U., Schild, D.: Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses. J. Contam. Hydrol. 133, 30 (2012).10.1016/j.jconhyd.2012.03.003Search in Google Scholar PubMed

20. Diener, A., Neumann, T.: Synthesis and incorporation of selenide in pyrite and mackinawite. Radiochim. Acta 99, 791 (2011).10.1524/ract.2011.1883Search in Google Scholar

21. Ma, B., Nie, Z., Liu, C. L., Kang, M. L., Bardelli, F., Chen, F. R., Charlet, L.: Kinetics of FeSe2 oxidation by ferric iron and its reactivity compared with FeS2. Sci. China-Chem. 57, 1300 (2014).10.1007/s11426-014-5126-7Search in Google Scholar

22. Ravel, B., Newville, M.: Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using ifeffit. J. Synchrotron.Radiat. 12, 537 (2005).10.1107/S0909049505012719Search in Google Scholar

23. Isaure, M. P., Laboudigue, A., Manceau, A., Sarret, G., Tiffreau, C., Trocellier, P., Lamble, G., Hazemann, J. L., Chateigner, D.: Quantitative Zn speciation in a contaminated dredged sediment by mu-PIXE, mu-SXRF, EXAFS spectroscopy and principal component analysis. Geochim. Cosmochim. Acta 66, 1549 (2002).10.1016/S0016-7037(01)00875-4Search in Google Scholar

24. Bardelli, F., Cattaruzza, E., Gonella, F., Rampazzo, G., Valotto, G.: Characterization of road dust collected in Traforo del San Bernardo highway tunnel: Fe and Mn speciation. Atmos. Environ. 45, 6459 (2011).10.1016/j.atmosenv.2011.07.035Search in Google Scholar

25. Ravel, B.: ATOMS: crystallography for the X-ray absorption spectroscopist. J. Synchrotron. Radiat. 8, 314 (2001).10.1107/S090904950001493XSearch in Google Scholar PubMed

26. Ankudinov, A. L., Ravel, B., Rehr, J. J., Conradson, S. D.: Realspace multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565 (1998).10.1103/PhysRevB.58.7565Search in Google Scholar

27. Meneghini, C., Bardelli, F., Mobilio, S.: ESTRA-FitEXA: a software package for EXAFS data analysis. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 285, 153 (2012).10.1016/j.nimb.2012.05.027Search in Google Scholar

28. Chivot, J.: Thermodynamique des Produits de Corrosion. Sciences et Techniques Series. ANDRA (2004).Search in Google Scholar

29. Weerasooriya, R., Tobschall, H. J.: Pyrite-water interactions: effects of pH and pFe on surface charge. Colloid Surf. APhysicochem. Eng. Asp. 264, 68 (2005).10.1016/j.colsurfa.2005.05.012Search in Google Scholar

30. Descostes, M., Schlegel, M. L., Eglizaud, N., Descamps, F., Miserque, F., Simoni, E.: Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim. Cosmochim. Acta 74, 1551 (2010).10.1016/j.gca.2009.12.004Search in Google Scholar

31. Kang, M. L., Ma, B., Bardelli, F., Chen, F. R., Liu, C. L., Zheng, Z., Wu, S. J., Charlet, L.: Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: implication to Se redox process. J. Hazard. Mater. 248249, 20 (2013).10.1016/j.jhazmat.2012.12.037Search in Google Scholar PubMed

32. Olin, Å., Nolang, B., Osadchii, E. G., Öhman, L. O., Rosen, E.: Chemical Thermodynamics 7: Chemical Thermodynamics of Selenium. Elsevier, Amsterdam (2005).Search in Google Scholar

33. Schoonen, M. A. A., Barnes, H. L.: Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C.Geochim. Cosmochim. Acta 55, 1505 (1991).10.1016/0016-7037(91)90123-MSearch in Google Scholar

Received: 2015-8-9
Accepted: 2016-4-15
Published Online: 2016-6-8
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2015-2496/html
Scroll to top button