Skip to main content

Advertisement

Log in

Thermal stress numerical study in granular packed bed storage tank

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Thermal energy storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants. Such a device is made up of a tank filled with a granular bed through which a heat-transfer fluid circulates. However, in such devices, the tank might be subjected to an accumulation of thermal stresses during cycles of loading and unloading due to the differential dilatation between the filler and the tank walls. The evolution of tank wall stresses over thermal cycles, taking into account both thermal and mechanical loads, is studied here using a numerical model based on the discrete element method. Simulations were performed for two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the stresses resulting from the two different loadings applied on the tank are compared as well the kinematic response of the internal granular material. The kinematics of the granular material are analyzed at the particles scale (i.e. discrete elements), with a focus on the effect of particle/particle and wall/particle friction. Results show that a faster rearrangement of the packing occur when a thermal gradient is moving along the tank, leading to higher values of stresses applied on the tank walls. In addition to this, the behavior of the packed bed is dependent on the friction levels in the tank, whether the friction between particles themselves or the friction at the contact of particles with the shell. The influence of the slenderness ratio of the tank is investigated as well. Moreover, a reduction of 20% of thermal applied stresses can be obtained when inclined wall boundaries are used. The combination of an homogeneous configuration with low levels of friction (using lubricants) in thermocline storage tanks with inclined fixed boundaries can decrease significantly the induced stresses applied on the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akinyele, D., Rayudu, R.: Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 8, 74 (2014)

    Google Scholar 

  2. Hohmeyer, O.H., Bohm, S.: Trends toward 100% renewable electricity supply in germany and europe: a paradigm shift in energy policies. Wiley Interdiscip. Rev. Energy Environ. 4(1), 74 (2015)

    Article  Google Scholar 

  3. Pudjianto, D., Aunedi, M., Djapic, P., Strbac, G.: Whole-systems assessment of the value of energy storage in low-carbon electricity systems. IEEE Trans. Smart Grid 5(2), 1098 (2014)

    Article  Google Scholar 

  4. Esence, T., Bruch, A., Molina, S., Stutz, B., Fourmigué, J.F.: A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems. Sol. Energy 153, 628 (2017)

    Article  ADS  Google Scholar 

  5. Xu, C., Wang, Z., He, Y., Li, X., Bai, F.: Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system. Appl. Energy 92, 65 (2012)

    Article  Google Scholar 

  6. NREL. Concentrating solar power projects. URL http://www.nrel.gov/csp/solarpaces/

  7. Tian, Y., Zhao, C.Y.: A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538 (2013)

    Article  Google Scholar 

  8. Philibert, C.: Technology Roadmap: Solar Thermal Electricity 2014 Edition. IEA, Paris (2014)

    Google Scholar 

  9. Philibert, C.: Solar energy perspectives (OECD, 2011)

  10. Sabihuddin, S., Kiprakis, A.E., Mueller, M.: A numerical and graphical review of energy storage technologies. Energies 8(1), 172 (2014)

    Article  Google Scholar 

  11. Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., Cabeza, L.F.: State of the art on high temperature thermal energy storage for power generation. part 1 concepts, materials and modellization. Renew. Sustain. Energy Rev. 14(1), 31 (2010)

    Article  Google Scholar 

  12. García-Olivares, A., Ballabrera-Poy, J., García-Ladona, E., Turiel, A.: A global renewable mix with proven technologies and common materials. Energy Policy 41, 561 (2012)

    Article  Google Scholar 

  13. Brosseau, D., Kelton, J.W., Ray, D., Edgar, M., Chisman, K., Emms, B., et al.: Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. Trans. ASME-N-J. Sol. Energy Eng. 127(1), 109 (2005)

    Article  Google Scholar 

  14. Libby, C.: Solar Thermocline Storage Systems: Preliminary Design Study. Electric Power Research Institute, Palo Alto (2010)

    Google Scholar 

  15. Haller, M.Y., Cruickshank, C.A., Streicher, W., Harrison, S.J., Andersen, E., Furbo, S.: Methods to determine stratification efficiency of thermal energy storage processes-review and theoretical comparison. Sol. Energy 83(10), 1847 (2009)

    Article  ADS  Google Scholar 

  16. Qin, F.G., Yang, X., Ding, Z., Zuo, Y., Shao, Y., Jiang, R., Yang, X.: Thermocline stability criterions in single-tanks of molten salt thermal energy storage. Appl. Energy 97, 816 (2012)

    Article  Google Scholar 

  17. Close, D.: Rock pile thermal storage for comfort air conditioning. Mech. Chem. Eng. Trans. Inst. Eng. (Aust.) MC1(1), 11–22 (1965)

    Google Scholar 

  18. Kolb, G.J., Lee, G., Mijatovic, P., Valmianski, E.: Thermal ratcheting analysis of advanced thermocline energy storage tanks. Technical Report, Sandia National Laboratories (SNL-NM), Albuquerque, NM, USA (2011)

  19. Pacheco, J.E., Showalter, S.K., Kolb, W.J., et al.: Development of a molten-salt thermocline thermal storage system for parabolic trough plants. Trans. ASME J. Sol. Energy Eng. 124(2), 153 (2002)

    Article  Google Scholar 

  20. Libby, C., Cerezo, L., Bedilion, R., Pietruszkiewicz, J., Lamar, M., Hollenbach, R.: In: SolarPACES Conference, Perpignan (2010)

  21. Cocco, D., Serra, F.: Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 mwe class concentrating solar power plants. Energy 81, 526 (2015)

    Article  Google Scholar 

  22. Bruch, A., Molina, S., Esence, T., Fourmigué, J., Couturier, R.: Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system. Renew. Energy 103, 277 (2017)

    Article  Google Scholar 

  23. Zavattoni, S., Barbato, M.C., Pedretti, A., Zanganeh, G., Steinfeld, A.: High temperature rock-bed tes system suitable for industrial-scale csp plant-cfd analysis under charge/discharge cyclic conditions. Energy Procedia 46, 124 (2014)

    Article  Google Scholar 

  24. Faas, S.: 10 mwe solar thermal central receiver pilot plant: thermal storage subsystem evaluation - final report. Technical Report, Sandia National Labs., Livermore, CA, USA (1986)

  25. Yang, Z., Garimella, S.V.: Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Sol. Energy 84(6), 974 (2010)

    Article  ADS  Google Scholar 

  26. Van Lew, J.T., Li, P., Chan, C.L., Karaki, W., Stephens, J.: Analysis of heat storage and delivery of a thermocline tank having solid filler material. J. Sol. Energy Eng. 133(2), 021003 (2011)

    Article  Google Scholar 

  27. Vargas, W.L., McCarthy, J.: Thermal expansion effects and heat conduction in granular materials. Phys. Rev. E 76(4), 041301 (2007)

    Article  ADS  Google Scholar 

  28. Chen, K., Cole, J., Conger, C., Draskovic, J., Lohr, M., Klein, K., Scheidemantel, T., Schiffer, P.: Granular materials: packing grains by thermal cycling. Nature 442(7100), 257 (2006)

    Article  ADS  Google Scholar 

  29. Chen, K.: Granular Materials Under Vibration and Thermal Cycles. The Pennsylvania State University, State College (2008)

    Google Scholar 

  30. Chen, K., Harris, A., Draskovic, J., Schiffer, P.: Granular fragility under thermal cycles. Granul. Matter 11(4), 237 (2009)

    Article  Google Scholar 

  31. Divoux, T., Gayvallet, H., Géminard, J.C.: Creep motion of a granular pile induced by thermal cycling. Phys. Rev. lett. 101(14), 148303 (2008)

    Article  ADS  Google Scholar 

  32. Blight, G.E.: Temperature changes affect pressures in steel bins. Int. J. Bulk Solids Storage Silos 1(3), 1–7 (1985)

    Google Scholar 

  33. Zhang, Q., Britton, M., Leitgeb, J.: Thermally induced pressures in an on-farm grain storage bin. Can. Agric. Eng. 35(1), 51 (1993)

    Google Scholar 

  34. Lapko, A., Prusiel, J.: Analysis of thermal effects in grouped silos of grain elevators. Int. Agrophys. 20(4), 301 (2006)

    Google Scholar 

  35. Carson, J.W.: Silo failures: case histories and lessons learned. Handb. Powder Technol. 10, 153 (2001)

    Article  Google Scholar 

  36. Dogangun, A., Karaca, Z., Durmus, A., Sezen, H.: Cause of damage and failures in silo structures. J. Perform. Constr. Facil. 23(2), 65 (2009)

    Article  Google Scholar 

  37. Charlas, B., Kneib, F., Gillia, O., Imbault, D., Doremus, P.: A tool for modelling the breathing of hydride powder in its container while cyclically absorbing and desorbing hydrogen. Int. J. Hydrog. Energy 40(5), 2283 (2015)

    Article  Google Scholar 

  38. Janssen, H.: Versuche uber getreidedruck in silozellen. Z. Ver. Deut. Ing. 39, 1045 (1895)

    Google Scholar 

  39. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47 (1979)

    Article  Google Scholar 

  40. Faas, S.: 10-mwe solar-thermal central-receiver pilot plant: thermal-storage-subsystem evaluation-subsystem activation and controls testing phase. Technical Report, Sandia National Labs., Livermore, CA, USA (1983)

  41. Flueckiger, S., Yang, Z., Garimella, S.V.: Thermocline energy storage in the solar one power plant: An experimentally validated thermomechanical investigation, Energy Sustainability, Washington, DC, pp. 7–10 (2011)

  42. González, I., Lehmkuhl, O., Pérez-Segarra, C., Oliva, A.: Dynamic thermoelastic analysis of thermocline-like storage tanks. Energy Procedia 69, 850 (2015)

    Article  Google Scholar 

  43. Dreißigacker, V., Müller-Steinhagen, H., Zunft, S.: Thermo-mechanical analysis of packed beds for large-scale storage of high temperature heat. Heat. Mass Transf. 46(10), 1199 (2010)

    Article  ADS  Google Scholar 

  44. Dreißigacker, V., Zunft, S., Müller-Steinhagen, H.: A thermo-mechanical model of packed-bed storage and experimental validation. Appl. Energy 111, 1120 (2013)

    Article  Google Scholar 

  45. P. Knödler, V. Dreißigacker, S. Zunft, In: AIP Conference Proceedings, (AIP Publishing), vol. 1734, pp. 050024, (2016)

  46. Sassine, N.H., Donzé, F.V., Bruch, A., Harthong, B.: Rock-bed thermocline storage: a numerical analysis of granular bed behavior and interaction with storage tank. In: AIP Conference Proceedings, vol. 1850, no. 1, p. 080023. AIP Publishing (2017)

  47. Bruch, A., Fourmigué, J., Couturier, R.: Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for csp power plant. Sol. Energy 105, 116 (2014)

    Article  ADS  Google Scholar 

  48. Matuttis, H., Luding, S., Herrmann, H.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109(1), 278 (2000)

    Article  Google Scholar 

  49. Radjai, F., Roux, S.: Contact dynamics study of 2d granular media: critical states and relevant internal variables. In: Hinrichsen, H., Wolf, D.E. (eds.) The Physics of Granular Media, pp. 165–186. Wiley, Weinheim (2004)

    Google Scholar 

  50. Donzé, F.V., Richefeu, V., Magnier, S.A.: Advances in discrete element method applied to soil, rock and concrete mechanics. Electron. J. Geotech. Eng. 8(1), 44 (2009)

    Google Scholar 

  51. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., et al.: Yade reference documentation. Yade Document. 474, 1 (2010)

    Google Scholar 

  52. Kozicki, J., Donzé, F.: A new open-source software developed for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Eng. 197(49), 4429 (2008)

    Article  ADS  MATH  Google Scholar 

  53. Kozicki, J., Donzé, F.: Yade-open dem: an open-source software using a discrete element method to simulate granular material. Eng. Comput. 26(7), 786 (2009)

    Article  MATH  Google Scholar 

  54. Huotari, T., Kukkonen, I.: Thermal expansion properties of rocks: literature survey and estimation of thermal expansion coefficient for olkiluoto mica gneiss. Posiva Oy, Olkiluoto, Work. Rep. 4, 62 (2004)

    Google Scholar 

  55. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  56. Schulze, D.: Stresses. In: Powders and Bulk Solids. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73768-1_9

  57. Esence, T.: Etude et optimisation de systmes de stockage thermique de type rgnratif solide/fluid. Ph.D. thesis, UGA (2017)

  58. Zanganeh, G., Pedretti, A., Zavattoni, S., Barbato, M., Haselbacher, A., Steinfeld, A.: Design of a 100 mwhth packed-bed thermal energy storage. Energy Procedia 49, 1071 (2014)

    Article  Google Scholar 

  59. Zanganeh, G., Pedretti, A., Zavattoni, S., Barbato, M., Steinfeld, A.: Packed-bed thermal storage for concentrated solar power-pilot-scale demonstration and industrial-scale design. Sol. Energy 86(10), 3084 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work has been financially supported by ADEME (Agence De l’Environnement et de la Ma\(\hat{i}\)trise de l’Energie). The opinions expressed in this paper do not reflect those of the research sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric-Victor Donzé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sassine, N., Donzé, FV., Harthong, B. et al. Thermal stress numerical study in granular packed bed storage tank. Granular Matter 20, 44 (2018). https://doi.org/10.1007/s10035-018-0817-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0817-y

Keywords

Navigation