Skip to main content

Advertisement

Log in

Timing of rockfalls in the Mont Blanc massif (Western Alps): evidence from surface exposure dating with cosmogenic 10Be

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Rockfalls and rock avalanches are a recurrent process in high mountain areas like the Mont Blanc massif. These processes are surveyed due to the hazard they present for infrastructure and alpinists. While rockfalls and rock avalanches have been documented for the last 150 years, we know very little about their frequency since the Last Glacial Maximum (LGM). In order to improve our understanding, it is imperative to date them on a longer timescale. A pilot campaign using Terrestrial Cosmogenic Nuclide (TCN) dating of five samples was carried out in 2006 at the Aiguille du Midi (3842 m a.s.l.). In 2011, a larger scale study (20 samples) was carried out in five other test sites in the Mont Blanc massif. This paper presents the exposure ages of the 2011 TCN study as well as the updated exposure ages of the 2006 study using newer TCN dating parameters. Most of these exposure ages lie within the Holocene but three ages are Pleistocene (59.87 ± 6.10 ka for the oldest). A comparison of these ages with air temperature and glacier cover proxies explored the possible relationship between the most active rockfall periods and the warmest periods of the Holocene: two clusters of exposure ages have been detected, corresponding to the Middle Holocene (8.2–4.2 ka) and the Roman Warm Period (c. 2 ka) climate periods. Some recent rockfalls have also been dated (< 0.56 ka).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen SK, Gruber S, Owens IF (2009) Exploring steep bedrock permafrost and its relationship with recent slope failures in the Southern Alps of New Zealand. Permafr Periglac Process 20:345–356. https://doi.org/10.1002/ppp.658

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP-historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. https://doi.org/10.1002/joc.1377

    Article  Google Scholar 

  • Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195

    Article  Google Scholar 

  • Ballantyne CK (2008) After the ice: Holocene geomorphic activity in the Scottish Highlands. Scott Geogr J 124(1):8–52

    Article  Google Scholar 

  • Ballantyne CK, Stone JO, Fifield LK (1998) Cosmogenic Cl-36 dating of postglacial landsliding at the Storr, Isle of Skye, Scotland. The Holocene 8:347–351

    Article  Google Scholar 

  • Baroni C, Orombelli G (1996) The Alpine ‘Iceman’ and Holocene climatic change. Quat Res 46:78–83

    Article  Google Scholar 

  • Böhlert R, Gruber S, Egli M, Maisch M, Brandová D, Haeberli W, Ivy-Ochs S, Christl M, Kubik P.W, Deline P (2008) Comparison of exposure ages and spectral properties of rock surfaces in steep, high alpine rock walls of Aiguille du Midi. Proceedings of the 9th International Conference on Permafrost, Institute of Northern Engineering–University of Alaska Fairbanks 143–148

  • Bond G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266. https://doi.org/10.1126/science.278.5341.1257

    Article  Google Scholar 

  • Brown ET, Edmond JM, Raisbeck GM, Yiou F, Kurz MD, Brook EJ (1991) Examination of surface exposure ages of Antarctic moraines using in-situ produced 10Be and 26Al. Geochim Cosmochim Acta 55:2269–2283

    Article  Google Scholar 

  • Brown E, Brook E, Raisbeck G, Yiou F, Kurz M (1992) Effective attenuation lengths of cosmic rays producing 10Be and 26Al in quartz: implications for exposure age dating. Geophys Res Lett 19:369–372

    Article  Google Scholar 

  • Butler RWH (1985) The restoration of thrust systems and displacement continuity around the Mont-Blanc massif, NW external Alpine thrust belt. J Struct Geol 7(5):569–582

    Article  Google Scholar 

  • Chmeleff J, von Blanckenburg F, Kossert K, Jakob D (2010) Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B: Bean Interact Mater Atoms, 268, Issue 2, 15, 192–199

  • Coutterand S, Buoncristiani J-F (2006) Paléogéographie du dernier maximum glaciaire du Pléistocène récent de la région du Massif du Mont Blanc, France. Quaternaire 17(1):35–43. https://doi.org/10.4000/quaternaire.633

    Article  Google Scholar 

  • Deline P, Gardent M, Magnin F, Ravanel L (2012) The morphodynamics of the Mont Blanc massif in a changing cryosphere: a comprehensive review. Geogr Ann: Ser A Phys Geogr 94:265–283

    Article  Google Scholar 

  • Deline P, Akçar N, Ivy-Ochs S, Kubik PW (2015) Repeated Holocene rock avalanches onto the Brenva Glacier, Mont Blanc massif, Italy: a chronology. Quat Sci Rev 126:186–200

    Article  Google Scholar 

  • Dunai TJ (2010) Cosmogenic nuclides principles, concepts and applications in the earth surface sciences. Cambridge University Press, Cambridge 187 p

    Book  Google Scholar 

  • Dunne J, Elmore D, Muzikar P (1999) Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27(1):3–11

    Article  Google Scholar 

  • Dussauge C, Grasso JR, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics. J Geophys Res: Solid Earth 108. https://doi.org/10.1029/2001JB000650

  • Fischer L, Purves RS, Huggel C, Noetzli J, Haeberli W (2012) On the influence of topographic, geological and cryospheric factors on rock slides and rockfalls in high mountain areas. Nat Hazards Earth Syst Sci 12:241–254. https://doi.org/10.5194/nhess-12-241-2012

    Article  Google Scholar 

  • Gosse JC, Phillips F (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112. https://doi.org/10.1029/2006JF000547

  • Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31. https://doi.org/10.1029/2004GL020051

  • Haas JN, Richoz I, Tinner W, Wick L (1998) Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8:301–309

    Article  Google Scholar 

  • Hermanns R, Niedermann S, Ivy-Ochs S, Kubik P (2004) Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina)—evidence from surface exposure dating and stratigraphic analyses. Landslides 1:113–122. https://doi.org/10.1007/s10346-004-0013-5

    Article  Google Scholar 

  • Hidy AJ, Gosse JC, Pederson JL, Mattern JP, Finkel RC (2010) A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona. Geochem Geophys Geosyst 11. https://doi.org/10.1029/2010GC003084

  • Holzhauser H, Magny MJ, Zumbühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15:789–801. https://doi.org/10.1191/0959683605hl853ra

    Article  Google Scholar 

  • Hormes A, Beer J, Schlüchter C (2006) A geochronological approach to understanding the role of solar activity on Holocene glacier length variability in the Swiss Alps. Geogr Ann Ser A, Phys Geogr 88:281–294

    Article  Google Scholar 

  • Ivy-Ochs S (1996) The dating of rock surfaces using in situ produced 10Be, 26Al and 36Cl, with examples from Antarctica and the Swiss Alps. PhD Thesis, ETH Zürich, 196 p

  • Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Quat Sci Rev 28:2137–2149

    Article  Google Scholar 

  • Ivy-Ochs S, Martin S, Campedel P, Hippe K, Alfimov V, Vockenhuber C, Andreotti E, Carugati G, Pasqual D, Rigo M, Vigano A (2017) Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy). Quat Sci Rev 169:188–205

    Article  Google Scholar 

  • Joerin UE, Nicolussi K, Fischer A, Stocker TF, Schlüchter C (2008) Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quat Sci Rev 27:337–350. https://doi.org/10.1016/j.quascirev.2007.10.016

    Article  Google Scholar 

  • Kobashi T, Goto-Azuma K, Box JE, Gao CC, Nakaegawa T (2013) Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes. Clim Past 9:2299–2317. https://doi.org/10.5194/cp-9-2299-2013

    Article  Google Scholar 

  • Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 56(9):3583–3587

    Article  Google Scholar 

  • Korschinek G, Bergmaier A, Faestermann T, Gerstmann UC, Remmert A (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B: Bean Interact Mater Atoms 268:187–191

    Article  Google Scholar 

  • Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surf Process Landf 38:876–887

    Article  Google Scholar 

  • Kubik PW, Christl M (2010) 10Be and 26Al measurements at the Zurich 6 MV tandem AMS facility. Nucl Instrum Methods B 268:880–883

    Article  Google Scholar 

  • Le Roux O, Schwartz S, Gamond JF, Jongmans D, Bourles D, Braucher R, Mahaney W, Carcaillet J, Leanni L (2009) CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics. Earth Planet Sci Lett 280:236–245. https://doi.org/10.1016/j.epsl.2009.01.034

    Article  Google Scholar 

  • Le Roy M (2012) Reconstitution des fluctuations glaciaires holocènes dans les Alpes occidentales - Apports de la dendrochronologie et des datations par isotopes cosmogéniques produits in situ (PhD thesis). Université de Grenoble

  • Le Roy M, Nicolussi K, Deline P, Astrade L, Edouard JL, Miramont C, Arnaud F (2015) Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quat Sci Rev 108:1–22. https://doi.org/10.1016/j.quascirev.2014.10.033

    Article  Google Scholar 

  • Luethi R, Gruber S, Ravanel L (2015) Modelling of transient thermal conditions in rockfall detachment areas: towards a better understanding of failure mechanisms in a changing permafrost environment. Geogr Ann A 97(4):753–767. https://doi.org/10.1111/geoa.12114

    Article  Google Scholar 

  • Magnin F, Brenning A, Bodin X, Deline P, Ravanel L (2015) Modélisation statistique de la distribution du permafrost de paroi: application au massif du Mont Blanc. Géomorphologie: Relief, Process Environ 21:145–162. https://doi.org/10.4000/geomorphologie.10965

    Article  Google Scholar 

  • Magnin F, Josnin J-Y, Ravanel L, Pergaud J, Pohl B, Deline P (2017) Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century. Cryosphere 11:1813–1834

    Article  Google Scholar 

  • Mann ME (2002) Little Ice Age. Encyclopedia of global environmental change. Volume 1, The Earth system: physical and chemical dimensions of global environmental change: 504–509

  • Marcott SA, Shakun JD, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198–1201

    Article  Google Scholar 

  • Masarik J, Frank M, Schäfer JM, Wieler R (2001) Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years. Geochim Cosmochim Acta 65:2995–3003

    Article  Google Scholar 

  • Mayewski PA, Rohling EE, Curt Stager J, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255. https://doi.org/10.1016/j.yqres.2004.07.001

    Article  Google Scholar 

  • Merchel S, Herpers U (1999) An update on radiochemical separation techniques for the determination of longlived radionuclides via accelerator mass spectrometry. Radiochim Acta 84:215–219

    Article  Google Scholar 

  • Mercier D, Cossart E, Decaulne A, Feuillet T, Jónsson HP, Sæmundsson Þ (2013) The Höfḥahólar rock avalanche (sturzström): chronological constraint of paraglacial landsliding on an Icelandic hillslope. The Holocene 23:432–446

    Article  Google Scholar 

  • Murton JB, Peterson R, Ozouf JC (2006) Bedrock fracture by ice segregation in cold regions. Science 314:1127–1129

    Article  Google Scholar 

  • McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153-154:1–16

    Article  Google Scholar 

  • Nicolussi K (2009) Klimaentwicklung in den Alpen während der letzten 7000 Jahre. Impulsreferate:109–124

  • NGRIP members (2004) High resolution record of Northern Hemisphere climateextending into the last interglacial period. Nature 431:147–151

    Article  Google Scholar 

  • Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J (2007) Absolute calibration of 10Be AMS standards. Nucl Instrum Methods Phys Res, Sect B 258:403–413. https://doi.org/10.1016/j.nimb.2007.01.297

    Article  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers, 3rd edn. Elsevier Science, Tarrytown 480p

    Google Scholar 

  • Pigati JS, Lifton NA (2004) Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ 14C and 10Be. Earth Planet Sci Lett 226:193–205. https://doi.org/10.1016/j.epsl.2004.07.031

    Article  Google Scholar 

  • Rasmussen SO, Vinther BM, Clausen HB, Andersen KK (2007) Early Holocene climate oscillations recorded in three Greenland ice cores. Quat Sci Rev 26:1907–1914. https://doi.org/10.1016/j.quascirev.2007.06.015

    Article  Google Scholar 

  • Ravanel L (2010) Caractérisation, facteurs et dynamiques des écroulements rocheux dans les parois à permafrost du massif du Mont-Blanc. PhD Thesis. Université de Savoie

  • Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc) : évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du Petit Age Glaciaire. Géomorphologie: Relief, Process, Environ 4:261–272

    Article  Google Scholar 

  • Ravanel L, Deline P (2010) Climate influence on rockfalls in high-alpine steep rock walls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the Little Ice Age. The Holocene 21:357–365

    Article  Google Scholar 

  • Ravanel L, Deline P (2013) A network of observers in the Mont Blanc massif to study rockfalls in high alpine rock walls. Geogr Fis Din Quat 36:151–158. https://doi.org/10.4461/GFDQ.2013.36.12

    Google Scholar 

  • Ravanel L, Allignol F, Deline P, Ravello M (2010a) Rock falls in the Mont Blanc massif in 2007 and 2008. Landslides 7:493–501. https://doi.org/10.1007/s10346-010-0206-z

    Article  Google Scholar 

  • Ravanel L, Deline P, Jaillet S (2010b) Quantification des éboulements/écroulements dans les parois de la haute montagne alpine: quatre années de laserscanning terrestre dans le massif du Mont-Blanc. Revue Française de Photogrammétrie et Télédétection 192:58–65

  • Ravanel L, Deline P, Lambiel C, Vincent C (2013) Instability of a highly vulnerable high alpine rock ridge: the lower Arête des Cosmiques (Mont Blanc massif, France). Geografiska Annaler: Series A, Phys Geogr 95(1):51–66

  • Ravanel L, Magnin F, Deline P (2017) Impacts of the 2003 and 2015 summer heat waves on permafrost-affected rock walls in the Mont Blanc massif. Sci Total Environ 609:132–143

    Article  Google Scholar 

  • Rossi M (2005) Déformation, transferts de matière et de fluide dans la croûte continentale: application aux massifs cristallins externes des Alpes. PhD Thesis, Université Joseph Fourier, 376 p

  • Schiermeier Q (2003) Alpine thaw breaks ice over permafrost’s role. Nature 424:712

    Article  Google Scholar 

  • Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian dolomites since the Late glacial. Catena 55:141–161

    Article  Google Scholar 

  • Stone J (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23753–23759

    Article  Google Scholar 

  • Strasser M, Anselmetti FS, Fäh D, Giardini D, Schnellmann M (2006) Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology 34:1005–1008

    Article  Google Scholar 

  • Svensson A, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Davies SM, Johnsen SJ, Muscheler R, Parrenin F, Rasmussen SO, others (2008) A 60 000 year Greenland stratigraphic ice core chronology. Clim Past 4:47–57

  • Walker MJC, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (International Commission on Stratigraphy). J Quat Sci 27:649–659. https://doi.org/10.1002/jqs.2565

    Article  Google Scholar 

  • Wegmann M, Gudmundsson GH, Haeberli W (1998) Permafrost changes in rock walls and the retreat of alpine glaciers: a thermal modelling approach. Permafr Periglac Process 9:23–33

    Article  Google Scholar 

  • Zerathe S, Lebourg T, Braucher R, Bourlès D (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127. https://doi.org/10.1016/j.quascirev.2014.02.015

    Article  Google Scholar 

  • Zoller H, Schindler C, Röthlisberger F (1966) Postglaziale gletscherstande und klimaschwankungen im Gotthardmassiv und Vorderheingebiet. Sonderabdruck aus Verhandl Naturf Ges Basel 77:97–164

    Google Scholar 

Download references

Acknowledgments

This study is part of ANR 14-CE03-0006 VIP Mont Blanc, ALCOTRA 342 PrévRisk Haute Montagne and Alpes Grenoble Innovation Recherche RED Mont-Blanc projects. We thank three anonymous reviewers for their constructive criticism that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavi Gallach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallach, X., Ravanel, L., Egli, M. et al. Timing of rockfalls in the Mont Blanc massif (Western Alps): evidence from surface exposure dating with cosmogenic 10Be. Landslides 15, 1991–2000 (2018). https://doi.org/10.1007/s10346-018-0999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-0999-8

Keywords

Navigation