Skip to main content

Advertisement

Log in

Field evidence for a proximate role of food shortage in the regulation of hibernation and daily torpor: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Hibernation and daily torpor (heterothermy) have long been assumed to be adaptive responses to seasonal energy shortage. Laboratory studies have demonstrated that food shortage alone can trigger the use of heterothermy. However, their potential to predict heterothermic responses in the wild is limited, and few field studies demonstrate the dependence of heterothermy on food availability under natural conditions. Thus, the view of heterothermy as an energy saving strategy to compensate for food shortage largely remains an untested hypothesis. In this paper, we review published evidence on the proximate role of food availability in heterothermy regulation by endotherms, and emphasize alternative hypotheses that remain to be tested. Most studies have relied on correlative evidence. Manipulations of food availability, that demonstrate the proximate role of food availability, have been conducted in only five free-ranging heterotherms. Several other metabolic constraints covary with food availability and can confound its effect. Shortage in water availability, the nutritional composition of food, or subsequent conversion of food in fat storage all could be actual proximate drivers of heterothermy regulation, rather than food shortage. Social interactions, competition for food and predation also likely modulate the relative strength of food shortage between individuals. The ecological relevance of the dependence of heterothermy on food availability remains to be assessed in field experiments that account for the confounding effects of covarying environmental and internal factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

PUFA:

Polyunsaturated fatty acids

References

  • Angilletta Jr MJ, Cooper BS, Schuler MS, Boyles JG (2010) The evolution of thermal physiology in endotherms. Frontiers in Bioscience E2:861–881

  • Audet D, Thomas DW (1997) Facultative hypothermia as a thermoregulatory strategy in the phyllostomid bats, Carollia perspicillata and Sturnira lilium. J Comp Physiol [B] 167:146–152

    CAS  Google Scholar 

  • Bae HH, Larkin JE, Zucker I (2003) Juvenile Siberian hamsters display torpor and modified locomotor activity and body temperature rhythms in response to reduced food availability. Physiol Biochem Zool 76:858–867. doi:10.1086/381462

    PubMed  Google Scholar 

  • Ben-Hamo M, Munoz-Garcia A, Williams JB, Korine C, Pinshow B (2013) Waking to drink: rates of evaporative water loss determine arousal frequency in hibernating bats. J Exp Biol 216:573–577. doi:10.1242/jeb.078790

    PubMed  Google Scholar 

  • Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171. doi:10.1007/s00114-008-0471-z

    CAS  PubMed  Google Scholar 

  • Bieber C, Lebl K, Stalder G, Geiser F, Ruf T (2014) Body mass dependent use of hibernation: why not prolong the active season, if they can? Funct Ecol 28:167–177. doi:10.1111/1365-2435.12173

    Google Scholar 

  • Bize P, Klopfenstein A, Jeanneret C, Roulin A (2007) Intra-individual variation in body temperature and pectoral muscle size in nestling Alpine swifts Apus melba in response to an episode of inclement weather. J Ornithol 148:387–393. doi:10.1007/s10336-007-0141-5

    Google Scholar 

  • Bondarenco A, Koertner G, Geiser F (2013) Some like it cold: summer torpor by freetail bats in the Australian arid zone. J Comp Physiol B Biochem Syst Environ Physiol 183:1113–1122. doi:10.1007/s00360-013-0779-7

    Google Scholar 

  • Boyles JG, Dunbar MB, Storm JJ, Brack V (2007) Energy availability influences microclimate selection of hibernating bats. J Exp Biol 210:4345–4350. doi:10.1242/jeb.007294

    PubMed  Google Scholar 

  • Boyles JG, Smit B, McKechnie AE (2011) A new comparative metric for estimating heterothermy in endotherms. Physiol Biochem Zool 84:115–123. doi:10.1086/656724

    PubMed  Google Scholar 

  • Boyles JG, Thompson AB, McKechnie AE, Malan E, Humphries MM, Careau V (2013) A global heterothermic continuum in mammals. Glob Ecol Biogeogr 22:1029–1039. doi:10.1111/geb.12077

    Google Scholar 

  • Bozinovic F, Marquet PA (1991) Energetics and torpor in the Atacama desert-dwelling rodent Phyllotis darwini rupestris. J Mammal 72:734–738

    Google Scholar 

  • Bozinovic F, Ruiz G, Rosenmann M (2004) Energetics and torpor of a South American “living fossil”, the microbiotheriid Dromiciops gliroides. J Comp Physiol [B] 174:293–297. doi:10.1007/s00360-004-0414-8

    Google Scholar 

  • Bozinovic F, Muñoz JLP, Naya DE, Cruz-Neto AP (2007) Adjusting energy expenditures to energy supply: food availability regulates torpor use and organ size in the Chilean mouse-opossum Thylamys elegans. J Comp Physiol [B] 177:393–400. doi:10.1007/s00360-006-0137-0

    Google Scholar 

  • Brooker B, Withers P (1994) Kidney structure and renal indexes of dasyurid marsupials. Aust J Zool 42:163–176. doi:10.1071/ZO9940163

    Google Scholar 

  • Buffenstein R (1985) The effect of starvation, food restriction, and water deprivation on thermoregulation and average daily metabolic rates in Gerbillus pusillus. Physiol Zool 58:320–328

    Google Scholar 

  • Canale CI, Henry P-Y (2010) Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Clim Res 43:135–147. doi:10.3354/cr00897

    Google Scholar 

  • Canale CI, Henry P-Y (2011) Energetic costs of the immune response and torpor use in a primate. Funct Ecol 25:557–565

    Google Scholar 

  • Canale CI, Perret M, Théry M, Henry P-Y (2011) Physiological flexibility and acclimation to food shortage in a heterothermic primate. J Exp Biol 214:551–560. doi:10.1242/jeb.046987

    PubMed  Google Scholar 

  • Canale CI, Perret M, Henry P-Y (2012) Torpor use during gestation and lactation in a primate. Naturwissenschaften 99:159–163

    CAS  PubMed  Google Scholar 

  • Carr JM, Lima SL (2013) Nocturnal hypothermia impairs flight ability in birds: a cost of being cool. Proc Biol Sci 280:20131846. doi:10.1098/rspb.2013.1846

    PubMed  Google Scholar 

  • Coburn DK, Geiser F (1998) Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113:467–473. doi:10.1007/s004420050399

    Google Scholar 

  • Dausmann KH (2014) Flexible patterns in energy savings: heterothermy in primates. J Zool 292:101–111. doi:10.1111/jzo.12104

    Google Scholar 

  • Doucette LI, Brigham RM, Pavey CR, Geiser F (2012) Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia 169:361–372. doi:10.1007/s00442-011-2214-7

    PubMed  Google Scholar 

  • Ehrhardt N, Heldmaier G, Exner C (2005) Adaptive mechanisms during food restriction in Acomys russatus: the use of torpor for desert survival. J Comp Physiol [B] 175:193–200. doi:10.1007/s00360-005-0475-3

    CAS  Google Scholar 

  • Ellis WAH, Marples TG, Phillips WR (1991) The effects of a temperature-determined food supply on the annual activity cycle of the lesser long-eared bat, Nyctophilus geoffroyi Leach 1821 (Microchiroptera: Vespertilioniodae). Aust J Zool 39:263–271

    Google Scholar 

  • Falkenstein F, Körtner G, Watson K, Geiser F (2001) Dietary fats and body lipid composition in relation to hibernation in free-ranging echidnas. J Comp Physiol [B] 171:189–194. doi:10.1007/s003600000157

    CAS  Google Scholar 

  • Fietz J, Tataruch F, Dausmann KH, Ganzhorn JU (2003) White adipose tissue composition in the free-ranging fat-tailed dwarf lemur (Cheirogaleus medius; Primates), a tropical hibernator. J Comp Physiol [B] 173:1–10. doi:10.1007/s00360-002-0300-1

    CAS  Google Scholar 

  • Florant GL, Healy JE (2012) The regulation of food intake in mammalian hibernators: a review. J Comp Physiol B Biochem Syst Environ Physiol 182:451–467. doi:10.1007/s00360-011-0630-y

    CAS  Google Scholar 

  • Forger NG, Dark J, Barnes BM, Zucker I (1986) Fat ablation and food restriction influence reproductive development and hibernation in ground-squirrels. Biol Reprod 34:831–840. doi:10.1095/biolreprod34.5.831

    CAS  PubMed  Google Scholar 

  • French AR (1982) Intraspecific differences in the pattern of hibernation in the ground squirrel Spermophilus beldingi. J Comp Physiol [B] 148:83–91

    Google Scholar 

  • French AR (2000) Interdependency of stored food and changes in body temperature during hibernation of the eastern chipmunk, Tamias sriatus. J Mammal 81:979–985

    Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274. doi:10.1146/annurev.physiol.66.032102.115105

    CAS  PubMed  Google Scholar 

  • Geiser F (2013) Hibernation. Curr Biol 23:R188–R193. doi:10.1016/j.cub.2013.01.062

    CAS  PubMed  Google Scholar 

  • Geiser F, Brigham RM (2000) Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). J Comp Physiol B Biochem Syst Environ Physiol 170:153–162. doi:10.1007/s003600050270

    CAS  Google Scholar 

  • Geiser F, Brigham RM (2012) The other functions of torpor. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world. Thermoregulatory and metabolic adaptations. Springer, Berlin, pp 109–121. doi:10.1007/978-3-642-28678-0

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds : physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Geiser F, Holloway JC, Körtner G, Maddocks TA, Turbill C, Brigham MR (2000) Do patterns of torpor differ between free-ranging and captive mammals and birds? In: Heldmaier G, Klingenspor M (eds) Life in the cold, eleventh international hibernation symposium, Springer, Berlin, pp 95–102

  • Génin F, Perret M (2003) Daily hypothermia in captive grey mouse lemurs (Microcebus murinus): effects of photoperiod and food restriction. Comp Biochem Physiol B Biochem Mol Biol 136:71–81. doi:10.1016/S1096-4959(03)00172-6

    PubMed  Google Scholar 

  • Gilbert C, McCafferty D, Le Maho Y, Giroud S, Blanc S, Ancel A (2010) One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev 85:545–569. doi:10.1111/j.1469-185X.2009.00115.x

    PubMed  Google Scholar 

  • Gillies AC, Ellison GTH, Skinner JD (1991) The effect of seasonal food restriction on activity, metabolism and torpor in the South-African hedgehog (Atelerix frontalis). J Zool 223:117–130

    Google Scholar 

  • Giroud S, Blanc S, Aujard F, Bertrand F, Gilbert C, Perret M (2008) Chronic food shortage and seasonal modulations of daily torpor and locomotor activity in the grey mouse lemur (Microcebus murinus). Am J Physiol Regul Integr Comp Physiol 294:R1958–R1967. doi:10.1152/ajpregu.00794.2007

    CAS  PubMed  Google Scholar 

  • Giroud S, Perret M, Le Maho Y, Momken I, Gilbert C, Blanc S (2009) Gut hormones in relation to body mass and torpor pattern changes during food restriction and re-feeding in the gray mouse lemur. J Comp Physiol [B] 179:99–111. doi:10.1007/s00360-008-0294-4

    Google Scholar 

  • Giroud S, Turbill C, Ruf T (2012) Torpor use and body mass gain during pre-hibernation in late-born juvenile garden dormice exposed to food shortage. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world. Thermoregulatory and metabolic adaptations. Springer, Berlin, pp 481–491

    Google Scholar 

  • Giroud S, Frare C, Strijkstra A, Boerema A, Arnold W, Ruf T (2013) Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus). PLoS ONE 8:e63111. doi:10.1371/journal.pone.0063111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimpo K, Legler K, Heldmaier G, Exner C (2013) That’s hot: golden spiny mice display torpor even at high ambient temperatures. J Comp Physiol B Biochem Syst Environ Physiol 183:567–581. doi:10.1007/s00360-012-0721-4

    CAS  Google Scholar 

  • Gutman R, Choshniak I, Kronfeld-Schor N (2006) Defending body mass during food restriction in Acomys russatus: a desert rodent that does not store food. Am J Physiol Regul Integr Comp Physiol 290:R881–R891. doi:10.1152/ajpregu.00156.2005

    CAS  PubMed  Google Scholar 

  • Gutman R, Yosha D, Choshniak I, Kronfeld-Schor N (2007) Two strategies for coping with food shortage in desert golden spiny mice. Physiol Behav 90:95–102. doi:10.1016/j.physbeh.2006.08.033

    CAS  PubMed  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329. doi:10.1016/j.resp.2004.03.014

    PubMed  Google Scholar 

  • Hellekant G, Hladik CM, Dennys V, Simmen B, Roberts TW, Glaser D (1993) On the relationship between sweet taste and seasonal body-weight changes in a primate (Microcebus murinus). Chem Senses 18:27–33

    CAS  Google Scholar 

  • Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R, Barnes BM, Dominoni D (2013) Annual rhythms that underlie phenology: biological time-keeping meets environmental change. Proc Biol Sci 280:20130016. doi:10.1098/rspb.2013.0016

    PubMed  Google Scholar 

  • Hickey MBC, Fenton MB (1996) Behavioural and thermoregulatory responses of female hoary bats, Lasiurus cinereus (Chiroptera: Vespertilionidae), to variations in prey availability. Ecoscience 3:414–422

    Google Scholar 

  • Hiebert SM (1991) Seasonal differences in the response of Rufous hummingbirds to food restriction: body mass and the use of torpor. Condor 93:526–537

    Google Scholar 

  • Hill VL, Florant GL (1999) Patterns of fatty acid composition in free-ranging yellow-bellied marmots (Marmota flaviventris) and their diet. Can J Zool 77:1494–1503. doi:10.1139/cjz-77-9-1494

    CAS  Google Scholar 

  • Hill VL, Florant GL (2000) The effect of a linseed oil diet on hibernation in yellow-bellied marmots (Marmota flaviventris). Physiol Behav 68:431–437. doi:10.1016/S0031-9384(99)00177-8

    CAS  PubMed  Google Scholar 

  • Himmshagen J (1985) Food restriction increases torpor and improves brown adipose tissue thermogenesis in OB/OB mice. Am J Physiol 248:E531–E539

    CAS  Google Scholar 

  • Humphries MM, Thomas DW, Hall CL, Speakman JR, Kramer DL (2002) The energetics of autumn mast hoarding in eastern chipmunks. Oecologia 133:30–37. doi:10.1007/s00442-002-1014-5

    PubMed  Google Scholar 

  • Humphries MM, Kramer DL, Thomas DW (2003a) The role of energy availability in mammalian hibernation: an experimental test in free-ranging eastern chipmunks. Physiol Biochem Zool 76:180–186. doi:10.1086/367949

    PubMed  Google Scholar 

  • Humphries MM, Thomas DW, Kramer DL (2003b) The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool 76:165–179. doi:10.1086/367950

    PubMed  Google Scholar 

  • Ibuka N, Fukumura K (1997) Unpredictable deprivation of water increases the probability of torpor in the Syrian hamster. Physiol Behav 62:551–556

    CAS  PubMed  Google Scholar 

  • Kanizsai P, Garami A, Solymar M, Szolcsanyi J, Szelenyi Z (2009) Energetics of fasting heterothermia in TRPV1-KO and wild type mice. Physiol Behav 96:149–154. doi:10.1016/j.physbeh.2008.09.023

    CAS  PubMed  Google Scholar 

  • Kelm DH, von Helversen O (2007) How to budget metabolic energy: torpor in a small Neotropical mammal. J Comp Physiol [B] 177:667–677. doi:10.1007/s00360-007-0164-5

    Google Scholar 

  • Kobbe S, Ganzhorn JU, Dausmann KH (2011) Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol [B] 181:165–173. doi:10.1007/s00360-010-0507-5

    Google Scholar 

  • Körtner G, Geiser F (2000a) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17:103–128

    PubMed  Google Scholar 

  • Körtner G, Geiser F (2000b) Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia 123:350–357. doi:10.1007/s004420051021

    Google Scholar 

  • Kronfeld-Schor N, Dayan T (2013) Thermal ecology, environments, communities, and global change: energy intake and expenditure in endotherms. Annu Rev Ecol Evol Syst 44:461–480. doi:10.1146/annurev-ecolsys-110512-135917

    Google Scholar 

  • Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89:3306–3316

    CAS  PubMed  Google Scholar 

  • Lebl K, Bieber C, Adamik P, Fietz J, Morris P, Pilastro A, Ruf T (2011) Survival rates in a small hibernator, the edible dormouse: a comparison across Europe. Ecography 34:683–692. doi:10.1111/j.1600-0587.2010.06691.x

    PubMed  PubMed Central  Google Scholar 

  • Lehmer EM, van Horne B (2001) Seasonal changes in lipids, diet, and body composition of free-ranging black-tailed prairie dogs (Cynomys ludovicianus). Can J Zool 79:955–965. doi:10.1139/z01-060

    CAS  Google Scholar 

  • Levy O, Dayan T, Kronfeld-Schor N (2011a) Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiol Biochem Zool 84:175–184. doi:10.1086/658171

    PubMed  Google Scholar 

  • Levy O, Dayan T, Kronfeld-Schor N (2011b) Interspecific competition and torpor in golden spiny mice: two sides of the energy-acquisition coin. Integr Comp Biol 51:441–448. doi:10.1093/icb/icr071

    PubMed  Google Scholar 

  • Levy O, Dayan T, Rotics S, Kronfeld-Schor N (2012) Foraging sequence, energy intake and torpor: an individual-based field study of energy balancing in desert golden spiny mice. Ecol Lett 15:1240–1248. doi:10.1111/j.1461-0248.2012.01845.x

    PubMed  Google Scholar 

  • Lovegrove BG (2000) Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier G, Klingenspor M (eds) Life in the cold, eleventh international hibernation symposium. Springer, Berlin, pp 29–40

  • Lovegrove BG (2012) The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev 87:128–162. doi:10.1111/j.1469-185X.2011.00188.x

    PubMed  Google Scholar 

  • Lovegrove BG, Raman J, Perrin MR (2001) Daily torpor in elephant shrews (Macroscelidea: Elephantulus spp.) in response to food deprivation. J Comp Physiol [B] 171:11–21

    CAS  Google Scholar 

  • McKechnie AE, Mzilikazi N (2011) Heterothermy in Afrotropical mammals and birds: a review. Integr Comp Biol 51:349–363. doi:10.1093/icb/icr035

    PubMed  Google Scholar 

  • McKechnie AE, Körtner G, Lovegrove BG (2006) Thermoregulation under semi-natural conditions in speckled mousebirds: the role of communal roosting. Afr Zool 41:155–163

    Google Scholar 

  • Mrosovsky N (1980) Circannual cycles in golden-mantled ground squirrels: experiments with food deprivation and effects of temperature on periodicity. J Comp Physiol A 136:355–360. doi:10.1007/BF00657357

    Google Scholar 

  • Munn AJ, Kern P, McAllan BM (2010) Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97:601–605. doi:10.1007/s00114-010-0670-2

    CAS  PubMed  Google Scholar 

  • Munro D, Thomas DW (2004) The role of polyunsaturated fatty acids in the expression of torpor by mammals: a review. Zoology 107:29–48. doi:10.1016/j.zool.2003.12.001

    CAS  PubMed  Google Scholar 

  • Munro D, Thomas DW, Humphries MM (2005) Torpor patterns of hibernating eastern chipmunk Tamias striatus vary in response to the size and fatty acid composition of food hoards. J Anim Ecol 74:692–700

    Google Scholar 

  • Munro D, Thomas DW, Humphries MM (2008) Extreme suppression of aboveground activity by a food-storing hibernator, the eastern chipmunk (Tamias striatus). Can J Zool 86:364–370. doi:10.1139/Z08-008

    Google Scholar 

  • Nespolo RF, Verdugo C, Cortés Pa, Bacigalupe LD (2010) Bioenergetics of torpor in the microbiotherid marsupial, monito del monte (Dromiciops gliroides): the role of temperature and food availability. J Comp Physiol [B] 180:767–773. doi:10.1007/s00360-010-0449-y

    Google Scholar 

  • Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). Am J Physiol Regul Integr Comp Physiol 278:R698–R704

    CAS  PubMed  Google Scholar 

  • Ortmann S, Heldmaier G, Schmid J, Ganzhorn JU (1997) Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften 84:28–32

    CAS  PubMed  Google Scholar 

  • Otsu R, Kimura T (1993) Effect of food availability and ambient temperature on hibernation in the Japanese dormouse, Glirulus japonicus. J Ethol 11:37–42

    Google Scholar 

  • Pelletier F, Reale D, Watters J, Boakes EH, Garant D (2009) Value of captive populations for quantitative genetics research. Trends Ecol Evol 24:263–270. doi:10.1016/j.tree.2008.11.013

    PubMed  Google Scholar 

  • Potkewitz LG, Baldwin BH, Tennant BC (1982) Food availability and hibernation in laboratory woodchucks. Lab Anim Sci 32:432–433

    Google Scholar 

  • Pulawa LK, Florant GL (2000) The effects of caloric restriction on the body composition and hibernation of the golden-mantled ground squirrel (Spermophilus lateralis). Physiol Biochem Zool 73:538–546. doi:10.1086/317752

    CAS  PubMed  Google Scholar 

  • Reichman OJ, Brown JH (1979) The use of torpor by Perognathus amplus in relation to resource distribution. J Mammal 60:550–555

    Google Scholar 

  • Rojas AD, Körtner G, Geiser F (2012) Cool running: locomotor performance at low body temperature in mammals. Biol Lett 8:868–870. doi:10.1098/rsbl.2012.0269

    PubMed  PubMed Central  Google Scholar 

  • Roth TCII, Rattenborg NC, Pravosudov VV (2010) The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation. Philos Trans R Soc Lond B Biol Sci 365:945–959. doi:10.1098/rstb.2009.0209

    PubMed  PubMed Central  Google Scholar 

  • Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am J Physiol Regul Integr Comp Physiol 294:R1044–R1052. doi:10.1152/ajpregu.00688.2007

    CAS  PubMed  Google Scholar 

  • Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G (1993) Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool 267:104–112. doi:10.1002/jez.1402670203

    CAS  PubMed  Google Scholar 

  • Schmid J (2001) Daily torpor in free-ranging gray mouse lemurs (Microcebus murinus) in Madagascar. Int J Primatol 22:1021–1031

    Google Scholar 

  • Schmid J, Speakman JR (2000) Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comp Physiol [B] 170:633–641

    CAS  Google Scholar 

  • Schmid J, Speakman JR (2009) Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 96:609–620. doi:10.1007/s00114-009-0515-z

    CAS  PubMed  Google Scholar 

  • Schubert KA, Boerema AS, Vaanholt LM, de Boer SF, Strijkstra AM, Daan S (2010) Daily torpor in mice: high foraging costs trigger energy-saving hypothermia. Biol Lett 6:132–135. doi:10.1098/rsbl.2009.0569

    PubMed  PubMed Central  Google Scholar 

  • Séguy M, Perret M (2005) Factors affecting the daily rhythm of body temperature of captive mouse lemurs (Microcebus murinus). J Comp Physiol [B] 175:107–115. doi:10.1007/s00360-004-0467-8

    Google Scholar 

  • Silva-Duran IP, Bozinovic F (1999) Food availability regulates energy expenditure and torpor in the Chilean mouse-opossum Thylamys elegans. Revista Chilena de Historia Naturale 72:371–375

    Google Scholar 

  • Simmen B, Josseaume B, Atramentowicz M (1999) Frugivory and taste responses to fructose and tannic acid in a prosimian primate and a didelphid marsupial. J Chem Ecol 25:331–346

    CAS  Google Scholar 

  • Smit B, McKechnie AE (2010) Do owls use torpor? Winter thermoregulation in free-ranging pearl-spotted owlets and African scops-owls. Physiol Biochem Zool 83:149–156. doi:10.1086/605457

    PubMed  Google Scholar 

  • Smit B, Boyles JG, Brigham RM, McKechnie AE (2011) Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. J Biol Rhythms 26:241–248. doi:10.1177/0748730411402632

    PubMed  Google Scholar 

  • Song X, Geiser F (1997) Daily torpor and energy expenditure in Sminthopsis macroura: interactions between food and water availability and temperature. Physiol Zool 70:331–337

    CAS  PubMed  Google Scholar 

  • Stawski C, Geiser F (2010a) Seasonality of torpor patterns and physiological variables of a free-ranging subtropical bat. J Exp Biol 213:393–399. doi:10.1242/jeb.038224

    CAS  PubMed  Google Scholar 

  • Stawski C, Geiser F (2010b) Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 97:29–35. doi:10.1007/s00114-009-0606-x

    CAS  PubMed  Google Scholar 

  • Stawski C, Turbill C, Geiser F (2009) Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J Comp Physiol [B] 179:433–441. doi:10.1007/s00360-008-0328-y

    Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296. doi:10.1126/science.1071281

    CAS  PubMed  Google Scholar 

  • Superina M, Jahn GA (2013) Effect of low-quality diet on torpor frequency and depth in the pichi Zaedyus pichiy (Xenarthra, Dasypodidae), a South American armadillo. J Therm Biol 38:280–285. doi:10.1016/j.jtherbio.2013.03.004

    Google Scholar 

  • Tannenbaum MG, Pivorun EB (1987) Differential effect of food restriction on the induction of daily torpor in Peromyscus maniculatus and Peromyscus leucopus. J Therm Biol 12:159–162. doi:10.1016/0306-4565(87)90057-X

    Google Scholar 

  • Turbill C, Bieber C, Ruf T (2011) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc Biol Sci 278:3355–3363. doi:10.1098/rspb.2011.0190

    PubMed  PubMed Central  Google Scholar 

  • Vuarin P, Dammhahn M, Henry P-Y (2013a) Torpor-based compensation of energy shortage: a review of evidences from field experiments. Integr Comp Biol 53:E221. doi:10.1093/icb/ict013

    Google Scholar 

  • Vuarin P, Dammhahn M, Henry P-Y (2013b) Individual flexibility in energy saving: body size and condition constrain torpor use. Funct Ecol 27:793–799. doi:10.1111/1365-2435.12069

    Google Scholar 

  • Vuarin P, Henry P-Y, Guesnet P, Alessandri J-M, Aujard F, Perret M, Pifferi F (2014) Shallow hypothermia depends on the level of fatty acid unsaturation in adipose and liver tissues in a tropical heterothermic primate. J Therm Biol (in press)

  • Webb PI, Skinner JD (1996) Summer torpor in African woodland dormice Graphiurus murinus (Myoxidae: Graphiurinae). J Comp Physiol [B] 166:325–330

    CAS  Google Scholar 

  • Westman W, Geiser F (2004) The effect of metabolic fuel availability on thermoregulation and torpor in a marsupial hibernator. J Comp Physiol [B] 174:49–57. doi:10.1007/s00360-003-0388-y

    CAS  Google Scholar 

  • Williams CT, Barnes BM, Kenagy GJ, Buck CL (2014) Phenology of hibernation and reproduction in ground squirrels: integration of environmental cues with endogenous programming. J Zool 292:112–124. doi:10.1111/jzo.12103

    Google Scholar 

  • Willis CKR, Brigham RM, Geiser F (2006) Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften 93:80–83. doi:10.1007/s00114-005-0063-0

    CAS  PubMed  Google Scholar 

  • Withers KW, White DH, Billingsley J (2000) Torpor in the carnivorous marsupial Sminthopsis macroura: effects of food quality and quantity. In: Heldmaier G, Klingenspor M (eds) Life in the cold, eleventh international hibernation symposium, Springer, Berlin, pp 127–137

  • Wojciechowski MS, Jefimow M, Tegowska E (2007) Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp Biochem Physiol A Mol Integr Physiol 147:828–840. doi:10.1016/j.cbpa.2006.06.039

    PubMed  Google Scholar 

  • Wolff JO, Bateman GC (1978) Effects of food availability and ambient temperature on torpor cycles of Perognathus flavus (Heteromyidae). J Mammal 59:707–716

    Google Scholar 

  • Woods CP, Brigham RM (2004) The avian enigma: “hibernation” by Common Poorwills (Phalaenoptilus nuttalli). In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation, and application. Twelfth international hibernation symposium. Biological Papers of the University of Alaska, vol 27. Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, pp 129–138

  • Wrazen JA, Wrazen LA (1982) Hoarding, body mass dynamics, and torpor as components of the survival strategy of the eastern chipmunk. J Mammal 63:63–72

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Ian D. Hume for inviting us to write this review. We are also thank Martine Perret, Sylvain Giroud and four anonymous reviewers for their useful comments on earlier versions of this manuscript, and to Melanie Dammhahn, Fabien Pifferi and Bruno Simmen for inspiring discussions on the topic. This work was funded by Centre National de la Recherche Scientifique and Muséum National d’Histoire Naturelle (UMR 7179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Henry.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuarin, P., Henry, PY. Field evidence for a proximate role of food shortage in the regulation of hibernation and daily torpor: a review. J Comp Physiol B 184, 683–697 (2014). https://doi.org/10.1007/s00360-014-0833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0833-0

Keywords

Navigation