Skip to main content
Log in

How Aging Affects Grasping Behavior and Pull Strength in Captive Gray Mouse Lemurs (Microcebus murinus)

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2019

This article has been updated

Abstract

Prehension is essential for animal survival and fitness. It is involved in locomotion and feeding behavior and subject to physical and physiological constraints. Studies of prehension in primates have explored the importance of food properties and of the environment, but aging has rarely been studied although prehensile capacity may deteriorate with age in humans. To test the hypothesis that aging affects grasping abilities and to reveal possible behavioral adaptations to this, we quantified behavioral grasping strategies and pull strength in 10 young adult (2–3 yr old) and 10 aged (7–8 yr old) gray mouse lemurs (Microcebus murinus). We assessed grasping strategies in an experimental cage by quantifying grip types used to grasp static and mobile foods. We measured strength using a Kistler triaxial force platform. Our results show that 1) mobile and static foods affected individuals of different ages in similar ways; 2) older individuals used more mouth grasps than young ones; 3) aged individuals made twice as many attempts as young ones when grasping mobile food items but this difference was not significant; and 4) there were no differences in hand grip strength between age classes but young individuals showed a higher foot pull strength compared to old ones. These data suggest that the observed differences in behavior may be due to a decrease in foot grip strength, which in turn influences stability on narrow branches, forcing animals to use their hands to maintain stability and preventing them from using their hands for food-related tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 03 August 2019

    The original version of this article unfortunately contained a mistake in the authorgroup section. Author Gr��goire Boulinguez-Ambroise's given name and surname were inadvertently interchanged.

  • 03 August 2019

    The original version of this article unfortunately contained a mistake in the authorgroup section. Author Gr��goire Boulinguez-Ambroise's given name and surname were inadvertently interchanged.

References

  • Allen, E. N., & Cavanaugh, J. E. (2014). Loss of motor coordination in an aging mouse model. Behavioural Brain Research, 267, 119–125.

    Article  PubMed  Google Scholar 

  • Bearzatto, B., Servais, L., Cheron, G., & Schiffmann, S. N. (2005). Age dependence of strain determinant on mice motor coordination. Brain Research, 1039, 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Bons, N., Mestre, N., & Petter, A. (1992). Seniles plaques and neurofibrillary changes in the brain of an aged lemurian primate Microcebus murinus. Neurobiology of Aging, 13, 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Butterworth, G., & Hopkins, B. (1988). Hand–mouth coordination in the new-born baby. Developmental Psychology, 6(4), 303–314.

    Article  Google Scholar 

  • Byron, C., Kunz, H., Matuszek, H., Lewis, S., & VanValkinburgh, D. (2011). Rudimentary pedal grasping in mice and implications for terminal branch arboreal quadrupedalism. The Journal of Morphology, 272, 230–240.

    Article  PubMed  Google Scholar 

  • Byron, C. D., VanValkinburgh, D., Northcutt, K., & Young, V. (2013). Plasticity in the cerebellum and primary somatosensory cortex relating to habitual and continuous slender branch climbing in laboratory mice (Mus musculus). The Anatomical Record, 296, 822–833.

    Article  PubMed  Google Scholar 

  • Byron, C. D., Herrel, A., Pauwels, E., De Muynck, A., & Patel, B. (2015). Mouse hallucal metatarsal cross-sectional geometry in a simulated fine branch niche. The Journal of Morphology, 276(7), 759–765.

    Article  PubMed  Google Scholar 

  • Campbell, M. J., Mccomas, A. J., & Petito, F. (1973). Physiological changes in ageing muscles. Journal of Neurology Neurosurgery and Psychiatry, 36, 174–182.

    Article  CAS  Google Scholar 

  • Carmeli, E., Patish, H., & Coleman, R. (2003). The aging hand. Journal of Gerontology, 58(2), M146–M152.

    Google Scholar 

  • Cartmill, M. (1974). Pads and claws in arboreal locomotion. In: F. A. Jenkins (Ed.), Primate locomotion. New York: Academic Press pp. 45–83.

  • Cherin, P. (2011). Age-related loss of muscle mass: Sarcopenia and camptocormia. Neurologie-Psychiatrie-Geriatrie, 11(62), 70–75.

    Article  Google Scholar 

  • Hämäläinen, A., Dammhahn, M., Aujard, F., Eberle, M., Hardy, I., et al (2015). Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of small-bodied primates. Proceedings of the Royal Society, 281, 20140830.

    Article  Google Scholar 

  • Kapandji, A. I. (1989). Prehension of the human hand. Annales de la Chirurgie de la Main, 8(3), 234–241.

    Article  CAS  Google Scholar 

  • Karl, J. M., & Whishaw, I. Q. (2013). Different evolutionary origins for the reach and the grasp: An explanation for dual visuomotor channels in primate parietofrontal cortex. Frontiers in Neurology, 4, 208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, H., & Francis, P. R. (1996). A comparison of prehension force control in young and elderly individuals. European Journal of Applied Physiology and Occupational Physiology, 74(5), 450–460.

    Article  CAS  PubMed  Google Scholar 

  • Languille, S., Blanc, S., Blin, O., Canale, C. I., Dal-Pan, A., et al (2012). The grey mouse lemur: A non-human primate model for ageing studies. Ageing Research Reviews, 11, 150–162.

    Article  CAS  PubMed  Google Scholar 

  • Languille, S., Liévin-Bazin, A., Picq, J. L., Louis, C., Dix, S., De Barry, J., Blin, O., Richardson, J., Bordet, R., Schenker, E., Djelti, F., Aujard, F. (2015). Deficits of psychomotor and mnesic functions across aging in mouse lemur primates. Frontiers in Behavioral Neuroscience. https://doi.org/10.3389/fnbeh.2014.00446.

  • Némoz-Bertholet, F., & Aujard, F. (2003). Physical activity and balance performance as a function of age in a prosimian primate (Microcebus murinus). Experimental Gerontology, 38, 407–414.

    Article  PubMed  Google Scholar 

  • Némoz-Bertholet, F., Menaker, M., & Aujard, F. (2004). Are age-related deficits in balance performance mediated by time of day in a prosimian primate (Microcebus Murinus)? Experimental Gerontology, 39, 841–848.

    Article  PubMed  Google Scholar 

  • Parfitt, G., Hargreaves, E. A., & Markland, D. (2000). The effect of prescribed and preferred intensity exercise on the psychological affect and the influence of baseline measures of affect. Journal of Health Psychology, 5(2), 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Perret, M., & Aujard, A. (2005). Aging and season affect plasma dehydroepiandrosterone sulfate (DHEA-S) levels in a primate. Experimental Gerontology, 40, 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Picq, J. L. (2007). Aging affects executive functions and memory in mouse lemur primates. Experimental Gerontology, 42(3), 223–232.

    Article  PubMed  Google Scholar 

  • Picq, J. L., Aujard, F., Volk, A., & Dhenain, M. (2012). Age-related cerebral atrophy in nonhuman primates predicts cognitive impairments. Neurobiology of Aging, 33(6), 1096–1109.

    Article  PubMed  Google Scholar 

  • Pifferi, F., Dal-Pan, A., Languille, S., & Aujard, F. (2013). Effects of resveratrol on daily rhythms of locomotor activity and body temperature in young and aged grey mouse lemurs. Oxydative Medicine and Cellular Longevity, 2013, 187301.

  • Pouydebat, E., Coppens, Y., & Gorce, P. (2006). Évolution de la préhension chez les primates humains et non humains : La précision et l'utilisation d'outils revisitées. L’Anthropologie, 110, 687–697.

    Article  Google Scholar 

  • Pouydebat, E., Gorce, P., & Bels, V. (2009). Biomechanical study of grasping according to the volume of the object: Human versus nonhuman primates. Journal of Biomechanics, 42(3–9), 266–272.

    Article  PubMed  Google Scholar 

  • Pouydebat, E., Reghem, E., Borel, A., & Gorce, P. (2011). Diversity of grip in adults and young humans and chimpanzees (Pan troglodytes). Behavioural Brain Research, 218, 21–28.

    Article  PubMed  Google Scholar 

  • Reghem, E., Tia, B., Bels, V., & Pouydebat, E. (2011). Food prehension and manipulation in Microcebus murinus (Prosimii, Cheirogaleidae). Folia Primatologica, 82, 177–188.

    Article  CAS  Google Scholar 

  • Scheumann, M., Joly-Radko, M., Leliveld, L., & Zimmermann, E. (2011). Does body posture influence hand preference in an ancestral primate model? Evolutionary Biology, 11, 1471–2148.

    Google Scholar 

  • Spinozzi, G., Truppa, V., & Lagana, T. (2004). Grasping behavior in tufted capuchin monkeys (Cebus apella): Grip types and manual laterality for picking up a small food item. American Journal of Physical Anthropology, 125, 30–41.

    Article  PubMed  Google Scholar 

  • Sustaita, D., Pouydebat, E., Abdala, V., Manzano, A., & Herrel, A. (2013). Getting a grip on tetrapod grasping: Form, function and evolution. Biological Reviews, 88(2), 380–405.

    Article  PubMed  Google Scholar 

  • Thomas, P., Pouydebat, E., Lebrazidec, M., Aujard, F., & Herrel, A. (2016). Determinants of pull strength in captive grey mouse lemurs (Microcebus murinus). Journal of Zoology, 298(2), 77–81.

    Article  Google Scholar 

  • Toussaint, S., Reghem, E., Chotard, H., Herrel, A., Ross, C. F., & Pouydebat, E. (2013). Food acquisition on arboreal substrates by the grey mouse lemur: Implication for primate grasping evolution. Journal of Zoology, 291, 235–242.

    Article  Google Scholar 

  • Toussaint, S., Herrel, A., Ross, C. F., Aujard, F., & Pouydebat, E. (2015). The use of substrate diameter and orientation in the context of food type in the mouse lemur, Microcebus murinus: Implications for the origins of grasping in primates. International Journal of Primatology, 36(3), 583–604.

    Article  Google Scholar 

  • Warrant, E. J. (2008). Seeing in the dark: Vision and visual behaviour in nocturnal bees and wasps. The Journal of Experimental Biology, 211, 1737–1746.

    Article  PubMed  Google Scholar 

  • Yoxall, A., Luxmoore, J., & Rowson, J. (2008). Further studies in hand-pack interaction using computer simulation. Packaging Technology and Science, 21, 61–72.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the editor-in chief Joanna M. Setchell and the reviewers for their great help in the improvement of the manuscript. We are grateful to Eric Gueton for his help in the manipulation of the gray mouse lemur. We thank Martine Perret and Isabelle Hardy for their invaluable information regarding the individuals studied. This work was funded through an Action Transversale du Muséum program (E. Pouydebat, MNHN, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Pouydebat.

Additional information

Handling Editor: Joanna M. Setchell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Brazidec, M., Herrel, A., Thomas, P. et al. How Aging Affects Grasping Behavior and Pull Strength in Captive Gray Mouse Lemurs (Microcebus murinus). Int J Primatol 38, 1120–1129 (2017). https://doi.org/10.1007/s10764-017-0001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-017-0001-y

Keywords

Navigation