Skip to main content
Log in

Inter-species variation in unpalatability does not explain polymorphism in a mimetic species

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Conspicuous colouration in unpalatable organisms acts as a warning signal of their unprofitability, a phenomenon known as aposematism. The protection conferred by such colouration can lead to evolutionary convergence in warning signals between aposematic species, because sharing warning signals reduces the per capita cost of predator learning. Consequently, most aposematic species display a single colour pattern and participate in a single mimetic community (i.e. mimicry ring) at any given locality. However, some, like the Amazonian butterfly Heliconius numata, are polymorphic and participate in several mimicry rings within the same locality. We tested whether the unexpected polymorphism of H. numata could be due to a weak defence against predators. Poorly defended species participating in a mimicry ring are subject to negative frequency dependent selection, because their presence weakens the protection provided by the shared signal. This could promote polymorphism and participation in multiple mimicry rings. Using wild caught great tits (Parus major), we compared the palatability of H. numata to one of its locally monomorphic co-mimics (Mechanitis polymnia) and to two other locally monomorphic Heliconius species (H. melpomene and H. erato). The tested birds strongly rejected the polymorphic species H. numata, as well as the two other Heliconius species. Unexpectedly, a significantly weaker rejection was found towards M. polymnia, which relies on different toxic compounds to Heliconius. Our study demonstrates that the origin of polymorphic mimicry in H. numata is unlikely to stem from low unpalatability and raises new questions on defence variation within mimetic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alatalo RV, Mappes J (1996) Tracking the evolution of warning signals. Nature 382:708–710. doi:10.1038/382708a0

    Article  CAS  Google Scholar 

  • Aubier TG, Sherratt TN (2015) Diversity in Müllerian mimicry: the optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution. doi:10.1111/evo.12790

    PubMed  Google Scholar 

  • Balogh AC, Gamberale-Stille G, Leimar O (2008) Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Anim Behav 76:1591–1599

    Article  Google Scholar 

  • Barnett CA, Bateson M, Rowe C (2014) Better the devil you know: avian predators find variation in prey toxicity aversive. Biol Lett 10:20140533

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates HW (1862) XXXII. Contributions to an Insect Fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Trans Linn Soc Lond 23:495–566. doi:10.1111/j.1096-3642.1860.tb00146.x

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version, 1(4)

  • Baxter SW, Nadeau NJ, Maroja LS et al (2010) Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet 6:e1000794

    Article  PubMed  PubMed Central  Google Scholar 

  • Brakefield PM (1985) Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biol J Linn Soc 26:243–267. doi:10.1111/j.1095-8312.1985.tb01635.x

    Article  Google Scholar 

  • Brower LP, Brower JVZ, Collins CT (1963) Experimental studies of mimicry: relative palatability and Müllerian mimicry among neotropical butterflies of the subfamily Heliconiinae. New York Zoological Society

  • Brown K (1979) The biology of Heliconius and related genera. Ann Rev Entomol 26:427–456

    Article  Google Scholar 

  • Brown KS Jr, Benson WW (1974) Adaptive polymorphism associated with multiple müllerian mimicry in Heliconius numata (lepid. Nymph.). Biotropica 6:205–228. doi:10.2307/2989666

    Article  Google Scholar 

  • Camara M (1997) Predator responses to sequestered plant toxins in buckeye caterpillars: are tritrophic interactions locally variable? J Chem Ecol 23:2093–2106. doi:10.1023/B:JOEC.0000006431.34359.c2

    Article  CAS  Google Scholar 

  • Cardoso MZ, Gilbert LE (2007) A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies (Heliconius). Naturwissenschaften 94:39–42

    Article  CAS  PubMed  Google Scholar 

  • Chai P (1986) Field observations and feeding experiments on the responses of rufous-tailed jacamars (Galbula ruficauda) to free-flying butterflies in a tropical rainforest. Biol J Linn Soc 29:161–189

    Article  Google Scholar 

  • Chai P, Srygley RB (1990) Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. Am Nat 135:748–765

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1975) Theoretical genetics of Batesian mimicry II. Evolution of supergenes. J Theor Biol 55:305–324

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (2011) Mimicry: the hunting of the supergene. Curr Biol 21:R846–R848. doi:10.1016/j.cub.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  • Clark R, Brown SM, Collins SC et al (2008) Colour pattern specification in the Mocker swallowtail Papilio dardanus: the transcription factor invected is a candidate for the mimicry locus H. Proc R Soc B Biol Sci 275:1181–1188

    Article  Google Scholar 

  • Counterman BA, Araujo-Perez F, Hines HM et al (2010) Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet 6:e1000796

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Natl Acad Sci 92:9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darst CR, Cummings ME (2006) Predator learning favours mimicry of a less-toxic model in poison frogs. Nature 440:208–211

    Article  CAS  PubMed  Google Scholar 

  • Despland E, Simpson SJ (2005) Food choices of solitarious and gregarious locusts reflect cryptic and aposematic antipredator strategies. Anim Behav 69:471–479

    Article  Google Scholar 

  • DeVries PJ, Stiles FG (1990) Attraction of pyrrolizidine alkaloid seeking Lepidoptera to Epidendrum paniculatum orchids. Biotropica 22:290–297

    Article  Google Scholar 

  • Engler-Chaouat HS, Gilbert LE (2007) De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J Chem Ecol 33:25–42

    Article  CAS  PubMed  Google Scholar 

  • Exnerová A, Landová E, Štys P et al (2003) Reactions of passerine birds to aposematic and non-aposematic firebugs (Pyrrhocoris apterus; Heteroptera). Biol J Linn Soc 78:517–525. doi:10.1046/j.0024-4066.2002.00161.x

    Article  Google Scholar 

  • Fisher R (1958) The genetical theory of natural selection, 2nd edn. Dover Publications, New York

    Google Scholar 

  • Gittleman JL, Harvey PH (1980) Why are distasteful prey not cryptic? Nature 286:149–150. doi:10.1038/286149a0

    Article  Google Scholar 

  • Guilford T, Nicol C, Rothschild M, Moore BP (1987) The biological roles of pyrazines: evidence for a warning odour function. Biol J Linn Soc 31:113–128. doi:10.1111/j.1095-8312.1987.tb01984.x

    Article  Google Scholar 

  • Hauglund K, Hagen SB, Lampe HM (2006) Responses of domestic chicks (Gallus gallus domesticus) to multimodal aposematic signals. Behav Ecol 17:392–398

    Article  Google Scholar 

  • Hay-Roe MM, Nation J (2007) Spectrum of cyanide toxicity and allocation in Heliconius erato and Passiflora host plants. J Chem Ecol 33:319–329

    Article  CAS  PubMed  Google Scholar 

  • Hegna RH, Galarza JA, Mappes J (2015) Global phylogeography and geographical variation in warning coloration of the wood tiger moth (Parasemia plantaginis). J Biogeogr. doi:10.1111/jbi.12513

    Google Scholar 

  • Huber B, Whibley A, Poul Y et al (2015) Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity 114:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihalainen E, Lindström L, Mappes J (2007) Investigating Müllerian mimicry: predator learning and variation in prey defences. J Evol Biol 20:780–791

    Article  CAS  PubMed  Google Scholar 

  • Ihalainen E, Lindström L, Mappes J, Puolakkainen S (2008) Butterfly effects in mimicry? Combining signal and taste can twist the relationship of Müllerian co-mimics. Behav Ecol Sociobiol 62:1267–1276

    Article  Google Scholar 

  • Ihalainen E, Rowland HM, Speed MP et al (2012) Prey community structure affects how predators select for Mullerian mimicry. Proc R Soc B Biol Sci 279:2099–2105. doi:10.1098/rspb.2011.2360

    Article  Google Scholar 

  • Joron M, Iwasa Y (2005) The evolution of a Müllerian mimic in a spatially distributed community. J Theor Biol 237:87–103. doi:10.1016/j.jtbi.2005.04.005

    Article  PubMed  Google Scholar 

  • Joron M, Wynne I, Lamas G, Mallet J (1999) Variable selection and the coexistence of multiple mimetic forms of the butterfly Heliconius numata. Evol Ecol 13:721–754. doi:10.1023/a:1010875213123

    Article  Google Scholar 

  • Joron M, Papa R, Beltran M et al (2006) A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol 4:1831–1840. doi:10.1371/journal.pbio.0040303

    Article  CAS  Google Scholar 

  • Kokko H, Mappes J, Lindström L (2003) Alternative prey can change model–mimic dynamics between parasitism and mutualism. Ecol Lett 6:1068–1076. doi:10.1046/j.1461-0248.2003.00532.x

    Article  Google Scholar 

  • Kunte K (2009) The diversity and evolution of Batesian mimicry in Papilio Swallowtail butterflies. Evolution 63:2707–2716. doi:10.2307/27743426

    Article  PubMed  Google Scholar 

  • Kunte K, Zhang W, Tenger-Trolander A et al (2014) Doublesex is a mimicry supergene. Nature 507:229–232

    Article  CAS  PubMed  Google Scholar 

  • Lindström L, Alatalo RV, Mappes J (1997) Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model. Proc R Soc Lond B Biol Sci 264:149–153. doi:10.1098/rspb.1997.0022

    Article  Google Scholar 

  • Lindström L, Alatalo RV, Mappes J et al (1999a) Can aposematic signals evolve by gradual change? Nature 397:249–251. doi:10.1038/16692

    Article  Google Scholar 

  • Lindström L, Alatalo R, Mappes J (1999b) Inherited avoidance towards colour, gregariousness and conspicuousness—experiments with naive and experienced predators. Behav Ecol 10:317–322

    Article  Google Scholar 

  • Lindström L, Alatalo RV, Mappes J (1999c) Reactions of hand-reared and wild-caught predators toward warningly colored, gregarious, and conspicuous prey. Behav Ecol 10:317–322. doi:10.1093/beheco/10.3.317

    Article  Google Scholar 

  • Lindström L, Alatalo RV, Lyytinen A, Mappes J (2001) Strong antiapostatic selection against novel rare aposematic prey. Proc Natl Acad Sci USA 98:9181–9184. doi:10.1073/pnas.161071598

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindström L, Alatalo RV, Lyytinen A, Mappes J (2004) The effect of alternative prey on the dynamics of imperfect Batesian and Müllerian mimicries. Evolution 58:1294–1302

    Article  PubMed  Google Scholar 

  • Lyytinen A, Alatalo RV, Lindström L, Mappes J (1999) Are European white butterflies aposematic? Evol Ecol 13:709–719

    Article  Google Scholar 

  • Mallet J, Gilbert LE (1995) Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol J Linn Soc 55:159–180

    Google Scholar 

  • Mallet J, Singer MC (1987) Individual selection, kin selection, and the shifting balance in the evolution of warning colours: the evidence from butterflies. Biol J Linn Soc 32:337–350

    Article  Google Scholar 

  • Marek PE, Bond JE (2009) A Müllerian mimicry ring in Appalachian millipedes. Proc Natl Acad Sci 106:9755–9760. doi:10.1073/pnas.0810408106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marples NM, Kelly DJ (1999) Neophobia and dietary conservatism: two distinct processes? Evol Ecol 13:641–653. doi:10.1023/A:1011077731153

    Article  Google Scholar 

  • Merrill RM, Dasmahapatra KK, Davey J et al (2015) The diversification of Heliconius butterflies: what have we learned in 150 years? J Evol Biol 28:1417–1438

    Article  CAS  PubMed  Google Scholar 

  • Müller F (1878) Über die vortheile der mimicry bei schmetterlingen. Zool Anz 1:54–55

    Google Scholar 

  • Nokelainen O, Valkonen J, Lindstedt C, Mappes J (2014) Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J Anim Ecol 83:598–605

    Article  PubMed  Google Scholar 

  • Pinheiro CEG (1996) Palatability and escaping ability in neotropical butterflies: tests with wild kingbirds (Tyrannus melancholicus, Tyrannidae). Biol J Linn Soc 59:351–365. doi:10.1111/j.1095-8312.1996.tb01471.x

    Article  Google Scholar 

  • Pinheiro CEG (2003) Does Mullerian mimicry work in nature? Experiments with butterflies and birds (Tyrannidae). Biotropica 35:356–364. doi:10.1111/j.1744-7429.2003.tb00589.x

    Google Scholar 

  • Pinheiro CE (2013) Jacamars (Aves, Galbulidae) as selective agents of mimicry in neotropical butterflies. Rev Bras Ornitol Braz J Ornithol 12:3

    Google Scholar 

  • Pliske TE (1975) Attraction of lepidoptera to plants containing pyrrolizidine alkaloids. Environ Entomol 4:455–473. doi:10.1093/ee/4.3.455

    Article  Google Scholar 

  • Poulton EB (1890) The colours of animals: their meaning and use, especially considered in the case of insects. Kegan Paul, Trench Trubner & Co, London

    Book  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. http://www.R-project.org

  • Ritland DB (1991) Revising a classic Butterfly mimicry scenario: demonstration of Müllerian Mimicry between Florida Viceroys (Limenitis archippus floridensis) and Queens (Danaus gilippus berenice). Evolution 45:918–934. doi:10.2307/2409699

    Article  Google Scholar 

  • Rowland HM, Ihalainen E, Lindstrom L et al (2007) Co-mimics have a mutualistic relationship despite unequal defences. Nature 448:64–67. doi:10.1038/nature05899

    Article  CAS  PubMed  Google Scholar 

  • Rubinoff I, Kropach C (1970) Differential reactions of Atlantic and Pacific predators to sea snakes. Nature 228:1288–1290. doi:10.1038/2281288a0

    Article  CAS  PubMed  Google Scholar 

  • Saporito R, Donnelly M, Spande T, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22:159–168. doi:10.1007/s00049-011-0088-0

    Article  CAS  Google Scholar 

  • Sheppard P (1975) Natural selection and heredity. Hutchinson, London

    Google Scholar 

  • Sherratt TN (2008) The evolution of Müllerian mimicry. Naturwissenschaften 95:681–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherratt TN (2011) The optimal sampling strategy for unfamiliar prey. Evolution 65:2014–2025. doi:10.1111/j.1558-5646.2011.01274.x

    Article  PubMed  Google Scholar 

  • Sillén-Tullberg B (1985) Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia 67:411–415

    Article  Google Scholar 

  • Sillén-Tullberg B, Wiklund C, Järvi T (1982) Aposematic coloration in adults and larvae of Lygaeus equestris and its bearing on Müllerian mimicry: an experimental study on predation on living bugs by the great tit Parus major. Oikos 39:131–136

    Article  Google Scholar 

  • Silva K (2000) Alcalóides pirrolizidínicos utilizados por insetos na defesa química contra predadores vertebrados e invertebrados. Master dissertation, Universidade Estadual de Campinas

  • Skelhorn J, Rowe C (2006a) Predator avoidance learning of prey with secreted or stored defences and the evolution of insect defences. Anim Behav 72:827–834

    Article  Google Scholar 

  • Skelhorn J, Rowe C (2006b) Prey palatability influences predator learning and memory. Anim Behav 71:1111–1118

    Article  Google Scholar 

  • Speed MP (1993) Muellerian mimicry and the psychology of predation. Anim Behav 45:571–580

    Article  Google Scholar 

  • Speed M (1999) Batesian, quasi-Batesian or Müllerian mimicry? Theory and data in mimicry research. Evol Ecol 13:755–776

    Article  Google Scholar 

  • Speed MP, Turner JRG (1999) Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biol J Linn Soc 67:281–312

    Article  Google Scholar 

  • Speed MP, Alderson NJ, Hardman C, Ruxton GD (2000) Testing Müllerian mimicry: an experiment with wild birds. Proc R Soc Lond B Biol Sci 267:725–731

    Article  CAS  Google Scholar 

  • Speed MP, Ruxton GD, Mappes J, Sherratt TN (2012) Why are defensive toxins so variable? An evolutionary perspective. Biol Rev 87:874–884

    Article  PubMed  Google Scholar 

  • Stuckert AM, Venegas P, Summers K (2014) Experimental evidence for predator learning and Müllerian mimicry in Peruvian poison frogs (Ranitomeya, Dendrobatidae). Evol Ecol 28:413–426. doi:10.1007/s10682-013-9685-4

    Article  Google Scholar 

  • Supple M, Papa R, Counterman B, McMillan WO (2014) The genomics of an adaptive radiation: insights across the Heliconius speciation continuum Ecological Genomics. Springer, New York, pp 249–271

    Google Scholar 

  • Trigo J, Brown K Jr (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22–29. doi:10.1007/BF01240582

    Article  CAS  Google Scholar 

  • Tullberg BS, Gamberale-Stille G, Solbreck C (2000) Effects of food plant and group size on predator defence: differences between two co-occurring aposematic Lygaeinae bugs. Ecol Entomol 25:220–225. doi:10.1046/j.1365-2311.2000.00238.x

    Article  Google Scholar 

  • Turner JRG, Speed MP (1996) Learning and memory in mimicry. I. Simulations of laboratory experiments. Philos Trans R Soc Lond B Biol Sci 351:1157–1170. doi:10.1098/rstb.1996.0100

    Article  Google Scholar 

  • Wang IJ, Shaffer HB (2008) Rapid color evolution in an aposematic species: a phylogenetic analysis of the color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution 62:2742–2759. doi:10.1111/j.1558-5646.2008.00507.x

    Article  CAS  PubMed  Google Scholar 

  • Waldron S, Honma AM, Dobler S, Mappes J (in review) Iridescence can function as a warning signal: experimental evidence from Oreina beetles. Behav Ecol

Download references

Acknowledgments

We thank Diego Llusia for his suggestions on the statistical analyses, Neil Rosser, John Endler, the associated editor and two anonymous reviewers for their helpful comments and suggestions. The authors thank SERFOR and the Peruvian Ministry of Agriculture for collecting permits (RESOLUCION DIRECTORAL No. 289-2014-MINAGRI-DGFFS-DGEFFS). This work was funded by a Labex BcDiv PhD grant to MA (ANR-10-LABX-0003-bcdiv), a young research grant from the French National Agency for Research, DOMEVOL (ANR-13-JSV7-0003-01) to VL and the Centre of Excellence in Biological Interactions at the University of Jyväskylä, Finland to JM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Arias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, M., Mappes, J., Théry, M. et al. Inter-species variation in unpalatability does not explain polymorphism in a mimetic species. Evol Ecol 30, 419–433 (2016). https://doi.org/10.1007/s10682-015-9815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9815-2

Keywords

Navigation