Skip to main content
Log in

Partial Opsin Sequences Suggest UV-Sensitive Vision is Widespread in Caudata

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) vision exists in several animal groups. Intuitively, one would expect this trait to be favoured in species living in bright environments, where UV light is the most present. However, UV sensitivity, as deduced from sequences of UV photoreceptors and/or ocular media transmittance, is also present in nocturnal species, raising questions about the selective pressure maintaining this perceptual ability. Amphibians are among the most nocturnal vertebrates but their visual ecology remains poorly understood relative to other groups. Perhaps because many of these species breed in environments that filter out a large part of UV radiation, physiological and behavioural studies of UV sensitivity in this group are scarce. We investigated the extent of UV vision in Caudata, the order of amphibians with the most nocturnal habits. We could recover sequences of the UV sensitive SWS1 opsin in 40 out of 58 species, belonging to 6 families. In all of these species, the evidence suggests the presence of functional SWS1 opsins under purifying selection, potentially allowing UV vision. Interestingly, most species whose opsin genes failed to amplify exhibited particular ecological features that could drive the loss of UV vision. This likely wide distribution of functional UV photoreceptors in Caudata sheds a new light on the visual ecology of amphibians and questions the function of UV vision in nocturnal animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennet, A. T. D., Cuthill, I. C., Partridge, J. C., & Maier, E. J. (1996). Ultraviolet vision and mate choice in zebra finches. Nature, 380, 433–435.

    Article  Google Scholar 

  • Blaustein, A. R., Kiesecker, J. M., Chivers, D. P., & Anthony, R. G. (1997). Ambient UV-B radiation causes deformities in amphibian embryos. Proceedings of the National Academy of Sciences USA, 94, 13735–13737.

    Article  CAS  Google Scholar 

  • Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48, 2022–2041.

    Article  PubMed  CAS  Google Scholar 

  • Briscoe, A. D., & Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471–510.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, L. D. S., Cowing, J. A., Wilkie, S. E., Bowmaker, J. K., & Hunt, D. M. (2006). Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Current Biology, 16, R81–R83.

    Article  CAS  Google Scholar 

  • Carvalho, L. S., Davies, W. L., Robinson, P. R., & Hunt, D. M. (2012). Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proceedings of the Royal Society London B, 279, 387–393.

    Article  Google Scholar 

  • Collin, S. P., Knight, M. A., Davies, W. L., Potter, I. C., Hunt, D. M., & Trezise, A. E. O. (2003). Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Current Biology, 13, R864–R865.

    Article  PubMed  CAS  Google Scholar 

  • Crump, D., Lean, D., Berrill, M., Coulson, D., & Toy, L. (1999). Spectral irradiance in pond water: influence of water chemistry. Photochemistry and Photobiology, 70, 893–901.

    Article  CAS  Google Scholar 

  • Davies, W. I. L., Collin, S. P., & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 21(13), 3121–3158.

    Article  PubMed  CAS  Google Scholar 

  • Delport, W., Poon, A. F., Frost, S. D., & Pond, S. L. K. (2010). Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26, 2455–2457.

  • Deutschlander, M. E., & Phillips, J. B. (1995). Characterization of an ultraviolet photoreceptor mechanism in the retina of an amphibian, the axolotl (Ambystoma mexicanum). Neuroscience Letters, 197, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Dietz, M. (1972). Erdkröten können UV-Licht sehen. Naturwissenschaften, 59, 316.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R. H., & Jeffery, G. (2014). The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132995.

    Article  CAS  Google Scholar 

  • Edrich, W. (1979). Honey bees: Photoreceptors participating in orientation behaviour to light and gravity. Journal of Comparative Physiology A, 133, 111–116.

    Article  Google Scholar 

  • Endler, J. A. (1993). The color of light in forests and its implications. Ecological Monographs, 63, 2–27.

    Article  Google Scholar 

  • Eugene, J. C., & Buchmann, S. L. (1974). Ultraviolet floral patterns as functional orientation cues in hymenopterous pollination systems. Animal Behaviour, 22, 481–485.

    Article  Google Scholar 

  • Govardovskii, V. I., & Zueva, L. V. (1974). Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vision Research, 14, 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hauser, F. E., van Hazel, I., & Chang, B. S. W. (2014). Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: Can wavelength sensitivity be inferred from sequence data? Journal of Experimental Zoology Part B, 322, 529–539.

    Article  CAS  Google Scholar 

  • Hoffmann, M., Tripathi, N., Henz, S. R., Lindholm, A. K., Weigel, D., Breden, F., et al. (2007). Opsin gene duplication and diversification in the guppy, a model for sexual selection. Proceedings of the Royal Society London B, 274, 33–42.

    Article  CAS  Google Scholar 

  • Hofmann, C. M., Marshall, N. J., Abdilleh, K., Patel, Z., Siebeck, U., & Carleton, K. L. (2012). Opsin evolution in damselfish: convergence, reversal, and parallel evolution across tuning sites. Journal of Molecular Evolution, 75, 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, C. M., O’Quin, K. E., Marshall, N. J., & Carleton, K. L. (2010). The relationship between lens transmission and opsin gene expression in cichlids from Lake Malawi. Vision Research, 50, 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Hölker, F., Wolter, C., Perkin, E., & Tockner, K. (2010). Light pollution as a biodiversity threat. Trends in Ecology & Evolution, 25, 681–682.

    Article  Google Scholar 

  • Hu, Z., Liu, F., Xu, X., Chen, Z., Chen, J., & Li, D. (2012). Spectral transmission of the principal-eye corneas of jumping spiders: Implications for ultraviolet vision. The Journal of Experimental Biology, 215, 2853–2859.

  • Hunt, D. M., Carvalho, L. S., Cowing, J. A., Parry, J. W. L., Wilkie, S. E., Davies, W. L., et al. (2007). Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochemistry and Photobiology, 83, 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H. (2013). Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—A significant trend in the evolution of mammalian vision. Visual Neurosciences, 30, 39–53.

    Article  Google Scholar 

  • Johnsen, S. (2012). The optics of life: A biologist’s guide to light in nature. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Johnsen, S., Kelber, A., Warrant, E., Sweeney, A. M., Widder, E. A., Lee, R. L., et al. (2006). Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. Journal of Experimental Biology, 209, 789–800.

    Article  PubMed  Google Scholar 

  • Karnik, S. S., Sakmar, T. P., Chen, H.-B., & Khorana, H. G. (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proceedings of the National Academy of Sciences USA, 85, 8459–8463.

    Article  CAS  Google Scholar 

  • Kawamura, S., & Kubotera, N. (2004). Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution, 58, 314–321.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, G., Naohara, T., Tanaka, Y., Nishi, T., & Anraku, K. (2009). Near-ultraviolet radiation guides the emerged hatchlings of loggerhead turtles Caretta caretta (Linnaeus) from a nesting beach to the sea at night. Marine and Freshwater Behaviour and Physiology, 42, 19–30.

    Article  Google Scholar 

  • Kelber, A., & Roth, L. S. V. (2006). Nocturnal colour vision–not as rare as we might think. Journal of Experimental Biology, 209, 781–788.

    Article  PubMed  Google Scholar 

  • Kim, J. M., Altenbach, C., Thurmond, R. L., Khorana, H. G., & Hubbell, W. L. (1997). Structure and function in rhodopsin: Rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proceedings of the National Academy of Sciences USA, 94, 14273–14278.

    Article  CAS  Google Scholar 

  • Korenyak, D. A., & Govardovskii, V. I. (2013). Photoreceptors and visual pigments in three species of newts. Journal of Evolutionary Biochemistry and Physiology, 49, 399–407.

    Article  CAS  Google Scholar 

  • Kosakovsky Pond, S. L., Frost, S. D. W., & Muse, S. V. (2005). HyPhy: Hypothesis testing using phylogenies. Bioinformatics, 21, 676–679.

    Article  CAS  Google Scholar 

  • La Touche, Y. D., & Kimeldorf, D. J. (1979). Spectral sensitivity of the newt Taricha granulosa, to visible and u.v. radiation. Comparative Biochemistry and Physiology Part A, 63, 313–317.

    Article  Google Scholar 

  • Li, D., & Lim, M. L. M. (2005). Ultraviolet cues affect the foraging behaviour of jumping spiders. Animal Behaviour, 70, 771–776.

    Article  Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. W., & Sakmar, T. P. (1996). Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry, 35, 11149–11159.

    Article  PubMed  CAS  Google Scholar 

  • Lind, O., Mitkus, M., Olsson, P., & Kelber, A. (2014). Ultraviolet vision in birds: the importance of transparent eye media. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132209.

    Article  Google Scholar 

  • Lynch, M., & Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science, 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2015). Mesquite: A modular system for evolutionary analysis. Version 3.03 http://mesquiteproject.org.

  • Melin, A. D., Moritz, G. L., Fosbury, R. A., Kawamura, S., & Dominy, N. J. (2012). Why aye-ayes see blue. American Journal of Primatology, 74, 185–192.

    Article  PubMed  Google Scholar 

  • Minamoto, T., & Shimizu, I. (2005). Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei). Comparative Biochemistry and Physiology part B, 140, 197–205.

    Article  CAS  Google Scholar 

  • Moritz, G. L., Lim, N. T. L., Neitz, M., Peichl, L., & Dominy, N. J. (2013). Expression and evolution of short wavelength sensitive opsins in colugos: A nocturnal lineage that informs debate on primate origins. Evolutionary Biology, 40, 542–553.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris, D. P., Zagarese, H., Williamson, C. E., Balseiro, E. G., Hargreaves, B. R., Modenatti, B., et al. (1995). The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnolology and Oceanography, 40, 1381–1391.

    Article  CAS  Google Scholar 

  • Nathans, J., & Hogness, D. S. (1983). Isolation, Sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell, 34, 807–814.

    Article  PubMed  CAS  Google Scholar 

  • Novales Flamarique, I. (2013). Opsin switch reveals function of the ultraviolet cone in fish foraging. Proceedings of the Royal Society London B, 280, 20122490.

    Article  Google Scholar 

  • Ödeen, A., & Håstad, O. (2003). Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Molecular Biology and Evolution, 20, 855–861.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D., & Holmes, E. C. (2009). Molecular evolution: A phylogenetic approach. Chichester: Wiley.

    Google Scholar 

  • Palczewski, K., Kumasaka, T., Hori, T., Behne, C. A., Motoshima, H., Fox, B. A., et al. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  • Parry, J. W. L., Poopalasundaram, S., Bowmaker, J. K., & Hunt, D. M. (2004). A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. Biochemistry, 43, 8014–8020.

    Article  PubMed  CAS  Google Scholar 

  • Peichl, L. (2005). Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 287A, 1001–1012.

    Article  CAS  Google Scholar 

  • Pérez i de Lanuza, G., & Font, E. (2014). Ultraviolet vision in lacertid lizards: Evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour. The Journal of Experimental Biology, 217, 2899–2909.

    Article  PubMed  CAS  Google Scholar 

  • Perry, G. H., Martin, R. D., & Verrelli, B. C. (2007). Signatures of functional constraint at aye-aye opsin genes: The potential of adaptive color vision in a noturnal primate. Molecular Biology and Evolution, 24, 1963–1970.

    Article  PubMed  CAS  Google Scholar 

  • Perry, R. J., & McNaughton, P. A. (1991). Response properties of cones from the retina of the tiger salamander. Journal of Physiology, 433, 561–587.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Porter, M. L., Cronin, T. W., McClellan, D. A., & Crandall, K. A. (2007). Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Molecular Biology and Evolution, 24, 253–268.

    Article  PubMed  CAS  Google Scholar 

  • Przyrembel, C., Keller, B., & Neumeyer, C. (1995). Trichromatic color vision in the salamander (Salamandra salamandra). Journal of Comparative Physiology A, 176, 575–586.

    Article  Google Scholar 

  • Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543–583.

    Article  PubMed  Google Scholar 

  • Rafaëlli, J. (2007). Les Urodèles du monde. Plumelec, France: Penclen editions.

  • Rickel, S., & Genin, A. (2005). Twilight transitions in coral reef fish: The input of light-induced changes in foraging behaviour. Animal Behaviour, 70, 133–144.

    Article  Google Scholar 

  • Ries, C., Spaethe, J., Sztatecsny, M., Strondl, C., & Hödl, W. (2008). Turning blue and ultraviolet: Sex-specific colour change during the mating season in the Balkan moor frog. Journal of Zoology, 276, 229–236.

    Article  Google Scholar 

  • Sakakibara, S., Hiramatsu, H., Takahashi, Y., Hisatomi, O., Kobayashi, Y., Sakami, S., et al. (2002). Opsin expression in adult, developing, and regenerating newt retinas. Mol. Brain Research, 103, 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, K., & Yang, Z. (2008). The trouble with sliding windows and the selective pressure in BRCA1. PLoS One, 3, e3746.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Secondi, J., Lepetz, V., & Théry, M. (2012). Male attractiveness is influenced by UV wavelengths in a newt species but not in its close relative. PlosOne, 7, e30391.

    Article  CAS  Google Scholar 

  • Siebeck, U. E., & Marshall, N. J. (2007). Potential ultraviolet vision in pre-settlement larvae and settled reef fish—A comparison across 23 families. Vision Research, 47, 2337–2352.

    Article  PubMed  CAS  Google Scholar 

  • Siitari, H., Honkavaara, J., & Viitala, J. (1999). Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proceedings of the Royal Society London B, 266, 2125–2129.

    Article  Google Scholar 

  • Smith, E. J., Partridge, J. C., Parsons, K. N., White, E. M., Bennett, A. T. D., & Church, S. C. (2002). Ultraviolet vision and mate choice in the guppy, Poecilia reticulata. Behavioral Ecology, 13, 11–19.

    Article  Google Scholar 

  • Starace, D. M., & Knox, B. E. (1998). Cloning and expression of a Xenopus short wavelength cone pigment. Experimental Eye Research, 67, 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, Y., & Yokoyama, S. (2005). Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis. Genetics, 171, 1153–1160.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tan, Y., Yoder, A. D., Yamashita, N., & Li, W.-H. (2005). Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences USA, 102, 14712–14716.

    Article  CAS  Google Scholar 

  • Tresize, A. E. O., & Collin, S. P. (2005). Opsins: evolution in waiting. Current Biology, 15, R794–R796.

    Article  CAS  Google Scholar 

  • Veilleux, C. C., Louis, E. E., & Bolnick, D. A. (2013). Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs. Molecular Biology and Evolution, 30, 1420–1437.

    Article  PubMed  CAS  Google Scholar 

  • Warrant, E. J., Kelber, A., Gislén, A., Greiner, B., Ribi, W., & Wcislo, W. T. (2004). Nocturnal vision and landmark orientation in a tropical halictid bee. Current Biology, 14, 1309–1318.

    Article  PubMed  CAS  Google Scholar 

  • Whiting, M. J., Stuart-Fox, D. M., O’Connor, D., Firth, D., Bennett, N. C., & Blomberg, S. P. (2006). Ultraviolet signals ultra-aggression in a lizard. Animal Behaviour, 72, 353–363.

    Article  Google Scholar 

  • Wilkie, S. E., Robinson, P. R., Cronin, T. W., Poopalasundaram, S., Bowmaker, J. K., & Hunt, D. M. (2000). Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry, 39, 7895–7901.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L., Hazard, E. S., Lockman, D. K., Crouch, R. K., & Ma, J. (1998). Molecular cloning of the salamander red and blue cone visual pigments. Molecular Vision, 4, 10.

  • Yang, Z., & Bielawski, J. P. (2000). Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution, 15, 496–503.

    Article  Google Scholar 

  • Yokoyama, S. (2000). Molecular evolution of visual vertebrate pigments. Progress in Retinal Eye Research, 19, 385–419.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, S. (2002). Molecular evolution of color vision in vertebrates. Gene, 300, 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, S. (2008). Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics, 9, 259–282.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, S., Radlwimmer, F. B., & Blow, N. S. (2000). Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proceedings of the National Academy of Sciences USA, 97, 7366–7371.

    Article  CAS  Google Scholar 

  • Zhao, H., Rossiter, S. J., Teeling, E. C., Li, C., Cotton, J. A., & Zhang, S. (2009). The evolution of color vision in nocturnal mammals. Proceedings of the National Academy of Sciences USA, 106, 8980–8985.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by ANR-2011-BSV7-001 project SENSHYBLE, and conducted with the approval of Préfectures de Maine-et-Loire and Essonne in accordance with the current laws in France. We are very thankful to Arnaud Jamin for providing most samples and Stéphane Sourice for technical assistance. PM carried out data acquisition, analysis and interpretation, and drafted the manucript. AÖ contributed to the conception of the study and data analysis, and revised the manuscript. MT contributed to the conception and the revision of the manuscript. DP contributed to data analysis and the revision of the manuscript. JS contributed to the conception of the study, data analysis and interpretation, and drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Mège.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mège, P., Ödeen, A., Théry, M. et al. Partial Opsin Sequences Suggest UV-Sensitive Vision is Widespread in Caudata. Evol Biol 43, 109–118 (2016). https://doi.org/10.1007/s11692-015-9353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9353-4

Keywords

Navigation