Skip to main content
Log in

The impact of earthworms on the abundance of Collembola: improvement of food resources or of habitat?

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

I assessed the direct influence of earthworm excretions, and the impact of earthworms through their action on the soil structure (increased macroporosity), on the population dynamics of the collembolan species Heteromurus nitidus. The intestinal content of Collembola arising from cultures on different soil types was observed, and two experimental cultures of H. nitidus were run: (1) a culture performed on an inert substrate supplied either with earthworm casts or with soil as food resource, (2) an experiment using microcosms with cores of two humus forms (moder and calcic mull), in the presence or absence of earthworms. The observation of gut contents revealed that H. nitidus feeds on excrements, the composition of which (ratio organic matter/mineral matter) varies according to the humus form where it lived. Slightly aged (10–15 days) organo-mineral casts of earthworms appeared to be a better food than calcic mull aggregates or organic material from moder. Densities of H. nitidus cultured in cores of calcic mull were higher than in moder, except when cores of moder were inhabited by an anecic earthworm for 2 months. The humus form strongly influenced populations of H. nitidus, firstly because densities of predators were higher in moder than in calcic mull, and probably also because of soil macroporosity. It was concluded that earthworms would affect predation on H. nitidus by creating a network of interconnected macropores in which Collembola can move and find shelter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbea JI, Jordana R (1988) Nota sobre la presencia masiva de Onychiurus folsomi Schaeffer (Collembola, Onychiuridae) en lechos de Eisenia andrei (Oligochaeta, Lumbricidae). Bol Sanidad Veg Plagas 14:535–540

    Google Scholar 

  • Arpin P, Kilbertus G, Ponge JF, Vannier G (1980) Importance de la microflore et de la microfaune en milieu forestier. In: Pesson P (ed) Actualités d’écologie forestière. Gauthier-Villars, Paris, pp 87–150

    Google Scholar 

  • Bayoumi BM (1978) Significance of the microhabitat on the distribution of oribatid mites in a hornbeam-oak mixed forest. Opusc Zool Budapest 15:51–59

    Google Scholar 

  • Bernier N, Ponge JF (1994) Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest. Soil Biol Biochem 26:183–220

    Article  Google Scholar 

  • Bouché MB (1972) Lombriciens de France. Ecologie et systématique. INRA, Paris

    Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231

    CAS  Google Scholar 

  • Capowiez Y, Renault P, Belzunces L (2001) Three-dimensional trajectories of Co-60-labelled earthworms in artificial cores of soil. Eur J Soil Sci 52:365–375

    Article  Google Scholar 

  • Cortez J, Bouché MB (1987) Composition chimique du mucus cutané de Allolobophora chaetophora chaetophora (Oligochaeta: Lumbricidae). C R Acad Sci Paris Ser III 305:207–210

    CAS  Google Scholar 

  • Daniel O, Anderson JM (1992) Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol Biochem 24:465–470

    Article  Google Scholar 

  • Delecour F (1983) Les formes d’humus: identification et description. Nat Belg 64:76–86

    Google Scholar 

  • Devliegher W, Verstraete W (1997) Microorganisms and soil physico-chemical conditions in the drilosphere of Lumbricus terrestris. Soil Biol Biochem 29:11–12

    Google Scholar 

  • Dindal DL (1990) Soil biology guide. Wiley, New York

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman and Hall, London

    Google Scholar 

  • Edwards CA, Fletcher KE (1971) A comparison of extraction methods for terrestrial arthropods. In: Phillipson J (ed) Methods of study in quantitative soil ecology: population, production and energy flow. Blackwell, Oxford, pp 150–185

    Google Scholar 

  • Ernsting G, Joosse ENG (1974) Predation on two species of surface dwelling Collembola. A study with radio-isotope labelled prey. Pedobiologia 14:222–231

    Article  Google Scholar 

  • Greenslade P, Fletcher KE (1986) Collembola from earthworm rearing beds at Rothamsted UK including three new records for Britain. Entomol Month Mag 122:143–144

    Google Scholar 

  • Hamilton WE, Sillman DY (1989) Influence of earthworm middens on the distribution of soil microarthropods. Biol Fertil Soils 8:279–284

    Google Scholar 

  • Hågvar S (1983) Collembola in Norwegian coniferous forest soils. II. Vertical distribution. Pedobiologia 25:383–401

    Google Scholar 

  • Hindell RP, McKenzie BM, Tisdall JM (1997) Influence of drying and ageing on the stabilization of earthworm (Lumbricidae) casts. Biol Fertil Soils 25:27–35

    Article  Google Scholar 

  • Jégou D, Cluzeau D, Wolf HJ, Gandon Y, Tréhen P (1998) Assessment of the burrow system of Lumbricus terrestris, Aporrectodea giardi, and Aporrectodea caliginosa using X-ray computed tomography. Biol Fertil Soils 26:116–121

    Google Scholar 

  • Koehler HH (1999) Predatory mites (Gamasina, Mesostigmata). Agric Ecosyst Environ 74:395–410

    Article  Google Scholar 

  • Lavelle P, Martin A (1992) Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol Biochem 24:1491–1498

    Article  Google Scholar 

  • Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. Plant Soil 170:23–33

    CAS  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson POWH, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lawrence KL, Wise DH (2000) Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia 44:33–39

    Google Scholar 

  • Loranger G, Ponge JF, Blanchart E, Lavelle P (1998) Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique). Biol Fertil Soils 27:21–26

    Article  Google Scholar 

  • Manley GV, Butcher JW, Zabik M (1976) DDT transfer and metabolism in a forest litter macro-arthropod food chain. Pedobiologia 16:81–98

    CAS  Google Scholar 

  • Marinissen JCY, Bok J (1988) Earthworm-amended soil structure: its influence on Collembola populations in grassland. Pedobiologia 32:243–252

    Google Scholar 

  • Martin A, Marinissen JCY (1993) Biological and physico-chemical processes in excrements of soil animals. Geoderma 56:331–347

    Article  CAS  Google Scholar 

  • Martin A, Cortez J, Barois I, Lavelle P (1987) Les mucus intestinaux de ver de terre moteur de leurs interactions avec la microflore. Rev Ecol Biol Sol 24:549–558

    Google Scholar 

  • McLean MA, Parkinson D (2000) Introduction of the epigeic earthworm Dendrobaena octaedra changes the oribatid community and microarthropod abundances in a pine forest. Soil Biol Biochem 32:1671–1681

    Article  CAS  Google Scholar 

  • Parkin TB, Berry EC (1994) Nitrogen transformations associated with earthworm casts. Soil Biol Biochem 26:1233–1238

    Article  Google Scholar 

  • Ponge JF (1993) Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia 37:223–244

    Google Scholar 

  • Poser T (1988) Chilopoden als Prädatoren in einem Laubwald. Pedobiologia 31:261–281

    Google Scholar 

  • Robinson CH, Ineson P, Piearce TG, Rowland AP (1992) Nitrogen mobilization by earthworms in limed peat soils under Picea sitchensis. J Appl Ecol 29:226–237

    Google Scholar 

  • Saetre P (1998) Decomposition, microbial community structure, and earthworm effects along a birch-spruce soil gradient. Ecology 79:834–846

    Google Scholar 

  • Salmon S (2001) Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils. Biol Fertil Soils 34:304–310

    Article  CAS  Google Scholar 

  • Salmon S, Ponge JF (1999) Distribution of Heteromurus nitidus (Hexapoda, Collembola) according to soil acidity: interactions with earthworms and predator pressure. Soil Biol Biochem 31:1161–1170

    Article  CAS  Google Scholar 

  • Salmon S, Ponge JF (2001) Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biol Biochem 33:1959–1969

    Article  CAS  Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic Press, London, pp 259–322

    Google Scholar 

  • Schaefer M (1995) Interspecific interactions in the soil community. Acta Zool Fenn 196:101–106

    Google Scholar 

  • Schaefer M, Schauermann J (1990) The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia 34:299–314

    Google Scholar 

  • Scheu S (1987a) The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia 72:197–201

    Google Scholar 

  • Scheu S (1987b) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol Fertil Soils 5:230–234

    Google Scholar 

  • Scheu S (1991) Mucus excretion and carbon turnover of endogeic earthworms. Biol Fertil Soils 12:217–220

    CAS  Google Scholar 

  • Schlegel D, Bauer T (1994) Capture of prey by two pseudoscorpion species. Pedobiologia 38:361–373

    Google Scholar 

  • Searle PL (1984) The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst 109:549–568

    Article  CAS  Google Scholar 

  • Shaw C, Pawluk S (1986) Faecal microbiology of Octolasion tyrtaeum, Aporrectodea turgida and Lumbricus terrestris and its relation to the carbon budgets of three artificial soils. Pedobiologia 29:377–389

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Subler S, Kirsch AS (1998) Spring dynamics of soil carbon, nitrogen, and microbial activity in earthworm middens in a no-till cornfield. Biol Fertil Soils 26:243–249

    Article  CAS  Google Scholar 

  • Takeda H (1978) Ecological studies of collembolan population in a pine forest soil. II. Vertical distribution of Collembola. Pedobiologia 18:22–30

    Google Scholar 

  • Tiunov AV, Scheu S (2000) Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biol Biochem 32:265–275

    Article  CAS  Google Scholar 

  • Tiunov AV, Bonkowski M, Alphei G, Scheu S (2001) Microflora, protozoa and nematoda in Lumbricus terrestris burrow walls: a laboratory experiment. Pedobiologia 45:46–60

    Google Scholar 

  • Tiwari SC, Tiwari BK, Mishra RR (1989) Microbial populations, enzyme activities and nitrogen-phosphorus-potassium enrichment in earthworm casts and in the surrounding soil of a pineapple plantation. Biol Fertil Soils 8:178–182

    Google Scholar 

  • Trigo D, Barois I, Garvin MH, Huerta E, Irisson S, Lavelle P (1999) Mutualism between earthworms and soil microflora. Pedobiologia 43:866–873

    Google Scholar 

  • Wallwork JA (1976) The distribution and diversity of soil fauna. Academic Press, London

    Google Scholar 

  • Wickenbrock L, Heisler C (1997) Influence of earthworm activity on the abundance of Collembola in soil. Soil Biol Biochem 29:3–4

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Jean-François Ponge for fruitful discussions and improvement of the paper. I also greatly acknowledge Céryl Techer for field assistance. I thank also anonymous reviewers for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Salmon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmon, S. The impact of earthworms on the abundance of Collembola: improvement of food resources or of habitat?. Biol Fertil Soils 40, 323–333 (2004). https://doi.org/10.1007/s00374-004-0782-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-004-0782-y

Keywords

Navigation