Skip to main content
Log in

The legs: a key to bird evolutionary success

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Birds are the most diverse and largest group of extant tetrapods. They show marked variability, yet much of this variation is superficial and due to feather and bill color and shape. Under the feathers, the skeleto-muscular system is rather constant throughout the bird group. The adaptation to flight is the explanation for this uniformity. The more obvious morphological adaptations for flight are the wings, but the trunk is always rigid, the tail is short and the neck is flexible, since all these features are correlated with flying behaviour. Unrelated to the exigencies of flight, the legs always have three long bones, and all the birds walk on their toes. This leg structure is a striking plesiomorphic feature that was already present in related dinosaurs. The multi-purpose potential of the legs is the result of the skeletal architecture of a body with three segmented flexed legs. This configuration provides mechanical properties that allow the use of the legs as propulsive, paddling, foraging or grooming tools. It is the association of diverse modes of locomotion—walking, running, hopping, flying and swimming—that have enabled the birds to colonize almost all the environments on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abourachid A (2000) Bipedal locomotion in birds: importance of functional parameters in terrestrial adaptation in Anatidae. Can J Zool 78:1994–1998

    Article  Google Scholar 

  • Abourachid A (2001) Kinematical parameters of terrestrial locomotion in cursorial (ratites), swimming (ducks), striding birds (quail and guineafowl). Comp Biochem Physiol Part A Integr Physiol 131:113–119

    Article  CAS  Google Scholar 

  • Abourachid A, Renous S (2000) Bipedal locomotion in ratites (Paleognathiform): example of cursorial birds. Ibis 142:538–549

    Article  Google Scholar 

  • Abourachid A, Höfling E, Renous S (2005) Walking kinematics parameters in some paleognathous and neognathous Neotropical birds. Ornitol Neotropical 16:471–479

    Google Scholar 

  • Abourachid A, Hackert R, Herbin M, Libourel PA, Lambert F, Gioanni H, Provini P, Blazevic P, Hugel V (2011) Bird terrestrial locomotion as revealed by 3D kinematics. Zoology 114:360–368

    Article  PubMed  Google Scholar 

  • Alexander RM (1992) Exploring biomechanics: animals in motion. Freeman, New York

    Google Scholar 

  • Bonser RHC, Rayner JMV (1996) Measuring leg thrust forces in the common starling. J Exp Biol 199:435–439

    PubMed  Google Scholar 

  • Bonser RHC, Norman AP, Rayner JMV (1999) Does substrate quality influence take-off decisions in common starlings? Funct Ecol 13:102–105

    Article  Google Scholar 

  • Buchart SHM, Collar NJ, Stattersfield JA, Bennun LA (2010) Foreword. In: del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the birds of the world, vol 15. Lynx, Barcelona, pp 13–68

    Google Scholar 

  • Campbell KE Jr, Marcus L (1992) The relationship of hindlimb bone dimensions to body weight in birds. Papers in avian paleontology honoring Pierce Brodkorb. Contrib Sci (Nat Hist Mus of Los Angel City) 36:395–412

    Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261

    PubMed  CAS  Google Scholar 

  • Chiappe LM, Witmer LM (2002) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley

    Google Scholar 

  • Chiappe L, Shuan J, Qiang J, Norell M (1999) Anatomy and systematics of the Confuciusornithidae (Theropoda-Aves) from the Late Mesozoic of Northeastern China. Bull Am Mus Nat Hist 242:1–89

    Google Scholar 

  • Clark J, Norell M, Makovick J (2002) Cladistic approaches to the relationships of birds to other theropod dinosaurs. In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 31–61

    Google Scholar 

  • Cracraft J (1971) The functional morphology of the hind limb of the Domestic Pigeon, Columba livia. Bull Am Mus Nat Hist 144:171–268

    Google Scholar 

  • del Hoyo J, Elliot A, Sargatal J (1992–2011) Handbook of the birds of the world, 16 vols. Lynx, Barcelona

  • Dingus L, Rowe T (1998) The mistaken extinction: dinosaur evolution and the origin of birds. Freeman, New York

    Google Scholar 

  • Earls KD (2000) Kinematics and mechanics of ground take-off in the starling Sturnis vulgaris and the quail Coturnix coturnix. J Exp Biol 203:725–739

    PubMed  CAS  Google Scholar 

  • Feduccia A (1996) The origin and evolution of birds. Yale University Press, New Haven

    Google Scholar 

  • Folch A (1992) Family Strutionidae (Ostrich). In: del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the birds of the world, vol 1. Lynx, Barcelona, pp 76–83

    Google Scholar 

  • Gatesy SM (1999) Guineafowl hind limb function. I: cineradiographic analysis and speed effects. J Morph 240:127–142

    Article  Google Scholar 

  • Gatesy SM, Biewener AA (1991) Bipedal locomotion: effects of speed, size and limb posture in birds and humans. J Zool (Lond) 224:127–147

    Article  Google Scholar 

  • Gatesy SM, Dial KP (1993) Tail muscle activity patterns in walking and flying pigeons (Columba livia). J Exp Biol 176:55–76

    Google Scholar 

  • Gatesy SM, Dial KP (1996) Locomotor modules and the evolution of avian flight. Evolution 50:331–340

    Article  Google Scholar 

  • Gatesy SM, Middleton KM (1997) Bipedalism, flight, and the evolution of theropod locomotor diversity. J Vert Paleontol 17:308–329

    Article  Google Scholar 

  • Green PR, Cheng P (1998) Variation in kinematics and dynamics of pigeon landing flight. J Exp Biol 206:3309–3316

    Google Scholar 

  • Hancock JA, Stevens NJ, Biknevicius AR (2007) Whole-body mechanics and kinematics of terrestrial locomotion in the Elegant-crested Tinamou Eudromia elegans. Ibis 149:605–614

    Article  Google Scholar 

  • Hayes G, Alexander RMcN (1983) The hopping gaits of crows (Corvidae) and other bipeds. J Zool 200:205–213

    Article  Google Scholar 

  • Höfling E, Abourachid A, Renous S (2006) Locomotion behavior of the Lettered Aracari (Pteroglossus Inscriptus) (Ramphastidae). Ornitol Neotrop 17:363–371

    Google Scholar 

  • Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy: II. Analysis and discussion. Zool J Linn Soc 149:1–95

    Article  PubMed  Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, Berlin

    Book  Google Scholar 

  • Provini P, Goupil P, Hugel V, Abourachid A (2012) Walking, paddling, waddling: 3D kinematics of Anatidae locomotion (Callonetta leucophrys). J Exp Zool

  • Raikow RJ (1985) Locomotor system. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic, London, pp 57–147

    Google Scholar 

  • Rayner JMV (1995) Dynamics of the vortex wakes of swimming and flying vertebrates. In: Ellington CP, Pedley TJ (eds) Biological fluid dynamics. Symp Soc Exp Biol 49:131–155

  • Riback G, Weihs D, Arad Z (2004) How do cormorants counter buoyancy during submerged swimming? J Exp Biol 207:2101–2114

    Article  Google Scholar 

  • Rubenson J, Heliams BD, Lloyd DA, Fournier PA (2004) Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase. Proc R Soc Lond B 271:1091–1099

    Article  Google Scholar 

  • Sato K, Watanuki Y (2010) Scaling of wing and foot stroke cycle in diving and flying seabirds. In: Miyaki CY, Höfling E, Donatelli RJ (eds) Abstracts of the 25th International Ornithological Congress, Campos do Jordão, p 179

  • Schuchmann KL (1999) Family Trochilidae (Hummingbirds). In: del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the birds of the world, vol 5. Lynx, Barcelona, pp 468–680

    Google Scholar 

  • Sereno P, Chenggang R (1992) Early evolution of avian flight and perching: new evidence from the Lower Cretaceous of China. Science 255:845–848

    Article  PubMed  CAS  Google Scholar 

  • Tobalske BW, Altshuler DL, Powers DA (2004) Take-off mechanics in hummingbirds (Trochilidae). J Exp Biol 207:1345–1352

    Article  PubMed  Google Scholar 

  • Verstappen M, Aerts P (2000) Terrestrial locomotion in the Black-Billed Magpie. I. Spatiotemporal gait characteristics. Mot Control 4:150–164

    CAS  Google Scholar 

  • Verstappen M, Aerts P, van Damme R (2000) Terrestrial locomotion in the Black-Billed Magpie: kinematic analysis of walking, running and out-of-phase hopping. J Exp Biol 203:2159–2170

    PubMed  CAS  Google Scholar 

  • Veselosky Z (1996) Le royaume des oiseaux. Gründ, Paris

    Google Scholar 

  • Videler JJ (2005) Avian flight. Oxford University Press, Oxford

    Google Scholar 

  • Watanuki Y (2010) Stroke during flight and dive in seabirds with different movement modes. In: Miyaki CY, Höfling E, Donatelli RJ (eds) Abstracts of the 25th International Ornithological Congress, Campos do Jordão, p 182

  • Watanuki Y, Takahashi A, Daunt F, Wanless S, Harris M, Sato K, Naito Y (2005) Regulation of stroke and glide in a foot-propelled avian diver. J Exp Biol 208:2207–2216

    Article  PubMed  Google Scholar 

  • Zeffer A, Norberg UML (2003) Leg morphology and locomotion in birds: requirements for force and speed during ankle flexion. J Exp Biol 206:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Zeffer A, Johansson LC, Marmebro Å (2003) Functional correlation between habitat use and leg morphology in birds (Aves). Biol J Linn Soc 79:461–484

    Article  Google Scholar 

  • Zhou Z, Clarke J, Zhang F (2008) Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornitine bird. J Anat 212:565–577

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Pauline Provini and Astrid Willener for providing films and images used for the drawings; to Peter Gibbs (St. Andrews University, Scotland) for linguistic revision of the manuscript; and an anonymous referee for improvements to the text. This contribution was supported by grants from the Unité Mixte de Recherches 7179 Centre national de la recherche scientifique (CNRS) et Muséum National d’Histoire Naturelle, Paris, and Action Transversale Muséum «Formes», France, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: Proc. 307542/2006-8) Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anick Abourachid.

Additional information

Communicated by Cristina Miyaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abourachid, A., Höfling, E. The legs: a key to bird evolutionary success. J Ornithol 153 (Suppl 1), 193–198 (2012). https://doi.org/10.1007/s10336-012-0856-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-012-0856-9

Keywords

Navigation