Skip to main content
Log in

Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Plant rhizosphere and internal tissues may constitute a relevant habitat for soil bacteria displaying high catabolic versatility towards xenobiotic aromatic compounds. Root exudates contain various molecules that are structurally related to aromatic xenobiotics and have been shown to stimulate bacterial degradation of aromatic pollutants in the rhizosphere. The ability to degrade specific aromatic components of root exudates could thus provide versatile catabolic bacteria with an advantage for rhizosphere colonization and growth. In this work, Cupriavidus pinatubonensis JMP134, a well-known aromatic compound degrader (including the herbicide 2,4-dichlorophenoxyacetate, 2,4-D), was shown to stably colonize Arabidopsis thaliana and Acacia caven plants both at the rhizoplane and endorhizosphere levels and to use root exudates as a sole carbon and energy source. No deleterious effects were detected on these colonized plants. When a toxic concentration of 2,4-D was applied to colonized A. caven, a marked resistance was induced in the plant, showing that strain JMP134 was both metabolically active and potentially beneficial to its host. The role for the β-ketoadipate aromatic degradation pathway during plant root colonization by C. pinatubonensis JMP134 was investigated by gene inactivation. A C. pinatubonensis mutant derivative strain displayed a reduced ability to catabolise root exudates isolated from either plant host. In this mutant strain, a lower competence in the rhizosphere of A. caven was also shown, both in gnotobiotic in vitro cultures and in plant/soil microcosms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Barret CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Chao CY, Yin MC (2009) Antibacterial effects of Roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog Dis 6:201–206

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, de Faria SM, Straliotto R, Pitard RM, Simoes-Araujo JL, Chou J-H, Chou Y-J, Barrios E, Prescott AR, Elliott GN, Sprent JI, Young JPW, James EK (2005) Proof that Burkholderia strains form effective symbioses with legumes: a study of novel mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Costa R, Salles JF, Berg G, Smalla K (2006) Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants. Environ Microbiol 8:2136–2149

    Article  PubMed  CAS  Google Scholar 

  • Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566

    Article  PubMed  CAS  Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate-degrading Pseudomonad. Arch Microbiol 99:61–70

    Article  PubMed  Google Scholar 

  • Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JP, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11:762–778

    Article  PubMed  Google Scholar 

  • Espinosa-Urgel M, Salido A, Ramos JL (2000) Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369

    Article  PubMed  CAS  Google Scholar 

  • Gough C, Galera C, Vasse J, Webster G, Cocking EC, Dénarié J (1997) Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Mol Plant Microbe Interact 10:560–570

    Article  PubMed  CAS  Google Scholar 

  • Graham TL (1998) Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol Biochem 36:134–144

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  PubMed  CAS  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309

    Article  PubMed  CAS  Google Scholar 

  • Jain V, Gupta K (2003) The flavonoid naringenin enhances intercellular colonization of rice roots by Azorhizobium caulinodans. Biol Fertil Soil 38:119–123

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg BJ (2006) Organic acids, sugars, and l-tryptophan in exudates of vegetables growing on stone wool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  PubMed  CAS  Google Scholar 

  • Kiely P, Haynes J, Higgins C, Franks A, Mark G, Morrissey J, O’Gara F (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol 51:257–266

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 10:1197–1205

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:429–436

    Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie van Leeuwenhoek 81:373–383

    Article  PubMed  CAS  Google Scholar 

  • Lykidis A, Pérez-Pantoja D, Ledger T, Mavromatis K, Anderson IJ, Ivanova NN, Hooper SD, Lapidus A, Lucas S, González B, Kyrpides NC (2010) The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS One 5(3):e9729

    Article  PubMed  Google Scholar 

  • Marx JM, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in Gram-negative bacteria. Biotechniques 33:1–6

    Google Scholar 

  • Mathysse AG, Stretton S, Dandie C, McClure NC, Goodman AE (1996) Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. FEMS Microbiol Lett 145:87–94

    Article  Google Scholar 

  • Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179

    Article  PubMed  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389

    Article  PubMed  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  PubMed  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomoie 23:375–396

    Article  CAS  Google Scholar 

  • O’Callaghan K, Stone P, Hu X, Griffiths D, Davey M, Cocking E (2000) Effects of glucosinolates and flavonoids in colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66:2185–2191

    Article  PubMed  Google Scholar 

  • Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    Article  PubMed  Google Scholar 

  • Pérez-Pantoja D, Donoso R, Junca H, González B, Pieper DH (2010a) Phylogenomics of aerobic bacterial degradation of aromatics, Chap. 39. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 2. Springer, Berlin, pp 1356–1397

    Google Scholar 

  • Pérez-Pantoja D, González B, Pieper DH (2010b) Aerobic degradation of aromatic hydrocarbons, Chap. 4. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 2. Springer, Berlin, pp 800–837

    Google Scholar 

  • Pérez-Pantoja D, Donoso RA, Agulló L, Córdova M, Seeger M, Pieper DH, González B (2011) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02613.x

  • Porra R, Thompson W, Kriedmann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Ramos-González MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vitro expression technology capture and identification of root-activated promoters. J Bacteriol 187:4033–4041

    Article  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ryu C-M, Hu C-H, Locy RD, Kloepper J (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Schnitzler JP, Madlung J, Rose A, Seitz HU (1992) Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Planta 188:594–600

    Article  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2003) Biodegradation of organic pollutants in the rhizosphere. Adv Appl Microbiol 53:1–60

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2004) Enhanced mineralization of [U-14C]2, 4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Appl Environ Microbiol 70:4766–4774

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2005) Rhizodeposition and the enhanced mineralization of 2, 4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environ Microbiol 7:191–202

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  PubMed  CAS  Google Scholar 

  • Simons M, van der Biji AJ, Brand I, de Wager LE, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Tan J, Bednarek P, Liu J, Schneider B, Svatos A, Hahlbrock K (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65:691–699

    Article  PubMed  CAS  Google Scholar 

  • Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere, biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554

    Article  PubMed  CAS  Google Scholar 

  • Webster G, Jain V, Davey M, Gough C, Vasse J, Denarie J, Cocking E (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373–383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the FONDECYT grants 3090051, 1070343, and 1110850, and the Millennium Nucleus on “Plant Functional Genomics” grant P/06-009-F. This study is also part of the research program FONDAP 1501-0001 funded by CONICYT to the Center for Advanced Studies in Ecology and Biodiversity, Program 7. Additional support from a CONICYT grant 79090016 is acknowledged. A.Z and R.D. are T.K, CONICYT—PhD fellows.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo González.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledger, T., Zúñiga, A., Kraiser, T. et al. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 101, 713–723 (2012). https://doi.org/10.1007/s10482-011-9685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9685-8

Keywords

Navigation