Skip to main content
Log in

Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Applications of statistical models to describe spatial dependence in geo-referenced data are widespread across many disciplines including the environmental sciences. Most of these applications assume that the data follow a Gaussian distribution. However, in many of them the normality assumption, and even a more general assumption of symmetry, are not appropriate. In non-spatial applications, where the data are uni-modal and positively skewed, the Birnbaum–Saunders (BS) distribution has excelled. This paper proposes a spatial log-linear model based on the BS distribution. Model parameters are estimated using the maximum likelihood method. Local influence diagnostics are derived to assess the sensitivity of the estimators to perturbations in the response variable. As illustration, the proposed model and its diagnostics are used to analyse a real-world agricultural data set, where the spatial variability of phosphorus concentration in the soil is considered—which is extremely important for agricultural management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson J, Hardy E, Roach J, Witmer R (1976). A land use and land cover classification system for use with remote sensor data. Technical Report Paper 964. US Geological Survey Professional, Washington, DC

  • Assumpção R, Uribe-Opazo M, Galea M (2011) Local influence for spatial analysis of soil physical properties and soybean yield using Student-t distribution. Rev Bras Ciênc Solo 35:1917–1926

    Article  Google Scholar 

  • Assumpção R, Uribe-Opazo M, Galea M (2014) Analysis of local influence in geostatistics using Student-t distribution. J Appl Stat 41:2323–2341

    Article  Google Scholar 

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew-normal distribution. J R Stat Soc B 61:579–602

    Article  Google Scholar 

  • Birnbaum Z, Saunders S (1969) A new family of life distributions. J Appl Probab 6:319–327

    Article  Google Scholar 

  • Borssoi J, De Bastiani F, Uribe-Opazo M, Galea M (2011) Local influence of explanatory variables in Gaussian spatial linear models. Chil J Stat 2:29–38

    Google Scholar 

  • Cambardella C, Moorman T, Novak J, Parkin T, Karlen D, Turco R, Konopka A (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • COAMO/COODETEC (2001) Soil fertility and plant nutrition. Technical report. Cooperativa Agropecuaria Mouraoense Ltda./Development Center Technological and Economic Cooperative Ltda. (COAMO/COODETEC), Cascavel, Brazil

  • Cook R (1987) Influence assessment. J Appl Stat 14:117–131

    Article  Google Scholar 

  • Davis D (1952) An analysis of some failure data. J Am Stat Assoc 47:113–150

    Article  Google Scholar 

  • De Bastiani F, Cysneiros A, Uribe-Opazo M, Galea M (2015) Influence diagnostics in elliptical spatial linear models. TEST 24:322–340

    Article  Google Scholar 

  • Diggle P, Ribeiro P (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • EMBRAPA (2009) Brazilian system of soil classification. Technical report. Brazilian Enterprise for National Agricultural Research/Centre of Soil Research (EMBRAPA/CPI), Rio de Janeiro, Brazil

  • Ferreira M, Gomes M, Leiva V (2012) On an extreme value version of the Birnbaum–Saunders distribution. Revstat Stat J 10:181–210

    Google Scholar 

  • Galea M, Leiva V, Paula G (2004) Influence diagnostics in log-Birnbaum–Saunders regression models. J Appl Stat 31:1049–1064

    Article  Google Scholar 

  • Gimenez P, Galea M (2013) Influence measures on corrected score estimators in functional heteroscedastic measurement error models. J Multivar Anal 114:1–15

    Article  Google Scholar 

  • Grzegozewski D, Uribe-Opazo M, De Bastiani F, Galea M (2013) Local influence when fitting Gaussian spatial linear models: an agriculture application. Ciênc Investig Agrár 40:235–252

    Google Scholar 

  • Isaaks E, Srivastava R (1989) An introduction to applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Johnson N, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New York

    Google Scholar 

  • Johnson N, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2. Wiley, New York

    Google Scholar 

  • Kendrick D (2002) Stochastic control for economic models. McGraw Hill, New York

    Google Scholar 

  • Krige D (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52:119–139

    Google Scholar 

  • Krippendorff K (2004) Content analysis: an introduction to its methodology. Sage, Thousand Oaks

    Google Scholar 

  • Lange K (2001) Numerical analysis for statisticians. Springer, New York

    Google Scholar 

  • Lange K, Little J, Taylor M (1989) Robust statistical modeling using the \(t\) distribution. J Am Stat Assoc 84:881–896

    Google Scholar 

  • Leiva V, Barros M, Paula G, Sanhueza A (2008) Generalized Birnbaum–Saunders distribution applied to air pollutant concentration. Environmetrics 19:235–249

    Article  CAS  Google Scholar 

  • Leiva V, Sanhueza A, Angulo JM (2009) A length-biased version of the Birnbaum–Saunders distribution with application in water quality. Stoch Environ Res Risk Assess 23:299–307

    Article  Google Scholar 

  • Leiva V, Rojas E, Galea M, Sanhueza A (2014) Diagnostics in Birnbaum–Saunders accelerated life models with an application to fatigue data. Appl Stoch Models Bus Ind 30:115–131

    Article  Google Scholar 

  • Leiva V, Marchant C, Ruggeri F, Saulo H (2015a) A criterion for environmental assessment using Birnbaum–Saunders attribute control charts. Environmetrics 26:463–476

    Article  Google Scholar 

  • Leiva V, Tejo M, Guiraud P, Schmachtenberg O, Orio P, Marmolejo F (2015b) Modeling neural activity with cumulative damage distributions. Biol Cybern 109:421–433

    Article  Google Scholar 

  • Leiva V, Ferreira M, Gomes M, Lillo C (2016a) Extreme value Birnbaum–Saunders regression models applied to environmental data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1069-6

    Google Scholar 

  • Leiva V, Liu S, Shi L, Cysneiros F (2016b) Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics. J Appl Stat 43:627–642

    Article  Google Scholar 

  • Leiva V, Santos-Neto M, Cysneiros F, Barros M (2016c) A methodology for stochastic inventory models based on a zero-adjusted Birnbaum–Saunders distribution. Appl Stoch Models Bus Ind 32:74–89

    Article  Google Scholar 

  • Liu S, Leiva V, Ma T, Welsh A (2016) Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions. Stat Methods Appl. doi:10.1007/s10260-015-0329-4

  • Marchant C, Leiva V, Cavieres M, Sanhueza A (2013) Air contaminant statistical distributions with application to PM10 in Santiago, Chile. Rev Environ Contam Toxicol 223:1–31

    CAS  Google Scholar 

  • Marchant C, Leiva V, Cysneiros F (2016) A multivariate log-linear model for Birnbaum–Saunders distributions. IEEE Trans Reliab. doi:10.1109/TR.2015.2499964

    Google Scholar 

  • Mardia K, Marshall R (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71:135–146

    Article  Google Scholar 

  • Militino A, Palacius M, Ugarte M (2006) Outliers detection in multivariate spatial linear models. J Stat Plan Inference 136:125–146

    Article  Google Scholar 

  • Muirhead R (1982) Aspects of multivariate statistical theory. Wiley, New York

    Book  Google Scholar 

  • Müller W, Stehlík M (2009) Issues in the optimal design of computer simulation experiments. Appl Stoch Models Bus Ind 25:163–177

    Article  Google Scholar 

  • Müller W, Stehlík M (2010) Compound optimal spatial designs. Environmetrics 21:354–364

    Article  Google Scholar 

  • Nocedal J, Wright S (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  • Ortega E, Bolfarine H, Paula G (2003) Influence diagnostics in generalized log-gamma regression models. Comput Stat Data Anal 42:165–186

    Article  Google Scholar 

  • Podlaski R (2008) Characterization of diameter distribution data in near-natural forests using the Birnbaum–Saunders distribution. Can J For Res 18:518–527

    Article  Google Scholar 

  • R-Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rieck J, Nedelman J (1991) A log-linear model for the Birnbaum–Saunders distribution. Technometrics 3:51–60

    Google Scholar 

  • Saulo H, Leiva V, Ziegelmann F, Marchant C (2013) A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data. Stoch Environ Res Risk Assess 27:1479–1491

    Article  Google Scholar 

  • Uribe-Opazo M, Borssoi J, Galea M (2012) Influence diagnostics in Gaussian spatial linear models. J Appl Stat 39:615–630

    Article  Google Scholar 

  • Vilca F, Sanhueza A, Leiva V, Christakos G (2010) An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile. Stoch Environ Res Risk Assess 24:771–782

    Article  Google Scholar 

  • Villegas C, Paula G, Leiva V (2011) Birnbaum–Saunders mixed models for censored reliability data analysis. IEEE Trans Reliab 60:748–758

    Article  Google Scholar 

  • Waller L, Gotway C (2004) Applied spatial statistics for public health data. Wiley, Hoboken

    Book  Google Scholar 

  • Xia J, Zeephongsekul P, Packer D (2011) Spatial and temporal modelling of tourist movements using semi-Markov processes. Tour Manag 51:844–851

    Article  Google Scholar 

  • Zhu H, Ibrahim J, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588

    Article  Google Scholar 

  • Zhu H, Lee S (2001) Local influence for incomplete-data models. J R Stat Soc B 63:111–126

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Editors and anonymous referees for their constructive comments on an earlier version of the manuscript, which resulted in this improved version. We are grateful to Carolina Brianezi-Melchior, who translated this work into English, from its original Portuguese. This research work was partially supported by CNPq Grants from the Brazilian Government, and by FONDECYT 1120879 Grant from the Chilean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Leiva.

Appendices

Appendix 1: The score vector

For the BS log-linear spatial model, the score vector is defined by

$$\begin{aligned} {\varvec{U}}( {\varvec{\theta} }) =\left( \frac{\partial \ell ({\varvec{\theta} })}{\partial \alpha },\,\frac{\partial \ell ({\varvec{\theta} })}{\partial \mu },\,\frac{\partial \ell ({\varvec{\theta} })}{\partial {\varvec{\varphi} }}\right) ^{\top} =\left( U( \alpha) ,\,U( \mu ) ,\, U\left(\varphi _{1}\right),\, U\left(\varphi _{2}\right),\, U\left(\varphi _{3}\right)\right) ^{\top} . \end{aligned}$$

Using the log-likelihood function defined in (20), we have

$$\begin{aligned} U( \alpha)&= \frac{\partial \ell ({\varvec{\theta} })}{\partial \alpha }= \frac{\partial }{\partial \alpha }\left( -n\log (\alpha )-\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{V}}\right)\\& =-\frac{n}{\alpha }+\frac{4}{\alpha ^{3}}{\varvec{V}}^{\top} {\varvec{\Sigma }}^{-1}{\varvec{V}},\\ U( \mu )&= \frac{\partial \ell ({\varvec{\theta} })}{\partial \mu }=\frac{\partial }{\partial \mu }\left( -\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{V}}+ \sum\limits_{i=1}^{n}\log \left( \cosh \left( \frac{y_{i}-\mu }{2}\right) \right) \right) \\&= \frac{2}{\alpha ^{2}}{\varvec{W}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{V}}-\frac{1}{2} \sum\limits_{i=1}^{n}\tanh\left( \frac{y_{i}-\mu }{2}\right) ,\\ U\left( \varphi _{j}\right)&= \frac{\partial \ell ({\varvec{\theta} })}{\partial \varphi _{j}}= \frac{\partial }{\partial \varphi _{j}}\left( -\frac{1}{2}\log ( |{\varvec{\Sigma} }|) -\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{V}}\right) \\&= -\frac{1}{2}{\text {tr}}\left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\varphi _{j}}\right) +\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\varphi _{j}}{\varvec{\Sigma} }^{-1}{\varvec{V}},\quad j=1,\,2,\,3, \end{aligned}$$

where \({\varvec{W}}=(W_{1},\ldots ,W_{n})^{\top},\) with \(W_{i}=\cosh ({(y_{i}-\mu )}/{2}),\) and \({\varvec{V}}=(V_{1},\ldots ,V_{n})^{\top}\) such as given in (19) with \(V_{i} =\sinh({(y_{i}-\mu )}/{2}),\) for \(i=1,\ldots ,n.\) Thus, considering that \({\varvec{\Sigma} }=\varphi _{1}{\varvec{I}}_{n}+\varphi _{2}{\varvec{R}},\) we have

$$\begin{aligned} \frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{1}}={\varvec{I}}_{n},\quad \frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{2}}={\varvec{R}},\quad \frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{3}}=\varphi _{2}\frac{\partial {\varvec{R}}}{\partial \varphi _{3}}. \end{aligned}$$

Therefore,

$$\begin{aligned} U\left( \varphi _{1}\right)&= -\frac{1}{2}\text {tr}\left( {\varvec{\Sigma} }^{-1}\right) +\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} \left( {\varvec{\Sigma} }^{-1}\right) ^{2}{\varvec{V}},\\ U\left( \varphi _{2}\right)&= -\frac{1}{2}\text {tr}\left( {\varvec{\Sigma} }^{-1}{\varvec{R}}\right) +\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{R}}{\varvec{\Sigma} }^{-1}{\varvec{V}},\\ U\left( \varphi _{3}\right)&= -\frac{\varphi _{2}}{2}\text {tr}\left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _{3}}\right) +\frac{2\varphi _{2}}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _{3}}{\varvec{\Sigma} }^{-1}{\varvec{V}}. \end{aligned}$$

Considering the Matérn model to describe the spatial variability given in (11), we have that \({\partial {\varvec{R}}}/{\partial \varphi _{3}}=({\partial r_{ij}}/{\partial \varphi _{3}}),\) where, for \(K^{\prime}_{\delta }(u)={\partial K_{\delta} (u)}/{\partial u}=- ({1}/{2})(K_{\delta -1}(u)+ K_{\delta +1}(u)),\)

$$\begin{aligned} \frac{\partial r_{ij}}{\partial \varphi _{3}}=-\left( \frac{1}{\varphi _{3}}\right) \left( \delta r_{ij}+\frac{1}{2^{\delta -1}\mu (\delta )}\left( \frac{h_{ij}}{\varphi _{3}}\right) ^{\delta +1}K^{\prime}_{\delta }\left( \frac{h_{ij}}{\varphi _{3}}\right) \right) ,\quad i\ne j,\quad i,\,j=1,\ldots ,n. \end{aligned}$$

Appendix 2: The observed information matrix

The observed Fisher information matrix for the BS log-linear spatial model is defined by \(-{\ddot{\varvec{\ell }}}({\varvec{\theta} })\) evaluated at \({\varvec{\theta} }=\widehat{\varvec{\theta }},\) where \({\ddot{\varvec{\ell }}}({\varvec{\theta} })\) is the Hessian matrix given by

$$\begin{aligned} {\varvec{\ddot{{\ell} }}}({\varvec{\theta} })=\left( \begin{array}{ccc} \frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \alpha^2 } &\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \alpha \partial \mu } &\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \alpha \partial {\varvec{\varphi} }^{\top} }\\ \frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \mu \partial \alpha } &\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \mu^2 } &\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \mu \partial {\varvec{\varphi} }^{\top} }\\ \frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial {\varvec{\varphi} }\partial \alpha } &\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial {\varvec{\varphi} }\partial \mu } &\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial {\varvec{\varphi} }\partial {\varvec{\varphi} }^{\top} } \end{array} \right) =\left( \begin{array}{ccc} {\ddot{\ell }}_{\alpha \alpha } &{\ddot{\ell }}_{\alpha \mu } &{\varvec{\ddot{{\ell} }}}_{\alpha {\varvec{\varphi} }} \\ {\ddot{\ell }}_{\mu \alpha } &{\ddot{\ell} }_{\mu \mu } &{\varvec{\ddot{{\ell} }}}_{\mu {\varvec{\varphi} }} \\ {\varvec{\ddot{{\ell} }}}_{{\varvec{\varphi} } \alpha } &{\varvec{\ddot{{\ell} }}}_{{\varvec{\varphi} } \mu } &{\varvec{\ddot{{\ell} }}}_{{\varvec{\varphi} } {\varvec{\varphi} }} \end{array} \right) , \end{aligned}$$

with, for \({\ddot{\ell }}_{\alpha \mu }={\ddot{\ell} }_{\mu \alpha },\)

$$\begin{aligned} \ddot{\ell }_{\alpha \alpha }= & {} \frac{\partial ^2\ell (\varvec{\theta })}{\partial \alpha ^2}= \frac{\partial }{\partial \alpha }\left( -\frac{n}{\alpha }+\frac{4}{\alpha ^3}\varvec{V}^\top \varvec{\Sigma }^{-1}\varvec{V}\right) = \frac{n}{\alpha ^2}-\frac{12}{\alpha ^4}\varvec{V}^\top \varvec{\Sigma }^{-1}\varvec{V},\\ \ddot{\ell }_{\mu \alpha }= & {} \frac{\partial ^2\ell (\varvec{\theta })}{\partial \mu \partial \alpha }= \frac{\partial }{\partial \mu }\left( \frac{4}{\alpha ^3}\varvec{V}^\top \varvec{\Sigma }^{-1}\varvec{V}\right) = -\frac{4}{\alpha ^3}\varvec{U}^\top \varvec{\Sigma }^{-1}\varvec{V}, \end{aligned}$$
$$\begin{aligned} \ddot{\ell }_{\mu \mu }= & {} \frac{\partial ^2\ell (\varvec{\theta })}{\partial \mu ^2}= \frac{\partial }{\partial \mu }\left( \frac{2}{\alpha ^2}\varvec{U}^\top \varvec{\Sigma }^{-1}\varvec{V}-\frac{1}{2}\displaystyle \sum _{i=1}^{n}\text {tanh}\left( \frac{y_i-\mu }{2}\right) \right) \\= & {} - \frac{1}{\alpha ^2}\left( \varvec{V}^\top \varvec{\Sigma }^{-1}\varvec{V}+\varvec{U}^\top \varvec{\Sigma }^{-1}\varvec{U}\right) +\frac{1}{4} \sum _{i=1}^{n}\text {sech}^2\left( \frac{y_i-\mu }{2}\right) . \end{aligned}$$

Note that \({\ddot{\ell} }_{\varphi \alpha }={\ddot{\ell} }_{\alpha \varphi} ^{\top}\) is a \(3\times 1\) vector with elements given by

$$\begin{aligned} {\ddot{\ell }}_{\alpha \varphi _{j}}= \frac{\partial ^{2}\ell ({\varvec{\theta} })}{\partial \alpha \partial \varphi _{j}}= \frac{\partial }{\partial \alpha }\left( -\frac{1}{2}{\text {tr}}\left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial\varphi _{j}}\right) +\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial\varphi _{j}}{\varvec{\Sigma} }^{-1}{\varvec{V}}\right) = -\frac{4}{\alpha ^{3}}{\varvec{V}}^{\top} \left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}\right) {\varvec{V}}, \quad j = 1, 2, 3\end{aligned}$$

where \({\partial {\varvec{\Sigma} }}/{\partial \varphi _{i}}\) is given in Appendix 1. Then, with \({\ddot{\ell} }_{{\alpha }{\varphi }_{1}}={\ddot{\ell} }_{{\varphi }_{1}{\alpha }},\) \({\ddot{\ell} }_{{\alpha }{\varphi }_{2}}={\ddot{\ell} }_{{\varphi }_{2}{\alpha }}\) and \({\ddot{\ell} }_{{\alpha }{\varphi }_{3}}={\ddot{\ell} }_{{\varphi }_{3}{\alpha }},\) we have

$$\begin{aligned} {\ddot{\ell} }_{\alpha \varphi _{1}} =-\frac{4}{\alpha ^{3}}{\varvec{V}}^{\top} \left( {\varvec{\Sigma} }^{-1}\right) ^{2}{\varvec{V}},\quad {\ddot{\ell} }_{\alpha \varphi _{2}} =-\frac{4}{\alpha ^{3}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{R}}{\varvec{\Sigma} }^{-1}{\varvec{V}},\quad {\ddot{\ell} }_{\alpha \varphi _{3}} =-\frac{4\varphi _{2}}{\alpha ^{3}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _{3}}{\varvec{\Sigma} }^{-1}{\varvec{V}}. \end{aligned}$$

Furthermore, \({\ddot{\ell} }_{\varphi \mu }={\ddot{\ell} }_{\mu \varphi} ^{\top}\) is a \(3\times 1\) vector with elements

$$\begin{aligned} {\ddot{\ell} }_{\mu \varphi _{j}}=\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \mu \partial \varphi _{j}}=\frac{\partial }{\partial \mu }\left( -\frac{1}{2}{\text {tr}}\left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial\varphi _{j}}\right) +\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial\varphi _{j}}{\varvec{\Sigma} }^{-1}{\varvec{V}}\right) =- \frac{2}{\alpha ^{2}}{\varvec{U}}^{\top} \left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}\right) {\varvec{V}}, \quad j = 1, 2, 3 \end{aligned}$$

Then, with \({\ddot{\ell} }_{{\mu }{\varphi }_{1}}={\ddot{\ell} }_{{\varphi }_{1}{\mu }},\, {\ddot{\ell} }_{{\mu }{\varphi }_{2}}={\ddot{\ell} }_{{\varphi }_{2}{\mu }}\) and \({\ddot{\ell} }_{{\mu }{\varphi }_{3}}={\ddot{\ell} }_{{\varphi }_{3}{\mu }},\) we have

$$\begin{aligned} {\ddot{\ell} }_{\mu \varphi _{1}}=-\frac{2}{\alpha ^{2}}{\varvec{U}}^{\top} \left( {\varvec{\Sigma} }^{-1}\right) ^{2}{\varvec{V}},\quad {\ddot{\ell} }_{\mu \varphi _{2}}=-\frac{2}{\alpha ^{2}}{\varvec{U}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{R}}{\varvec{\Sigma} }^{-1}{\varvec{V}},\quad {\ddot{\ell} }_{\mu \varphi _{3}}=-\frac{2\varphi _{2}}{\alpha ^{2}}{\varvec{U}}^{\top} {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _{3}}{\varvec{\Sigma} }^{-1}{\varvec{V}}. \end{aligned}$$

Moreover, \({\varvec{\ddot{\ell }}}_{{\varvec{\varphi} }{\varvec{\varphi }}} =({\ddot{\ell }}_{\varphi _{j}\varphi _{k}})\) is a \(3\times 3\) symmetric matrix with elements given by

$$\begin{aligned} {\ddot{\ell }}_{{\varphi }_{j}{\varphi }_{k}}=\frac{\partial ^{2} \ell ({\varvec{\theta} })}{\partial \varphi _{j}\varphi _{k}}&= -\frac{1}{2}{\text {tr}}\left( -{\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{k}}+{\varvec{\Sigma} }^{-1}\frac{\partial ^{2}{\varvec{\Sigma} }}{\partial \varphi _{j}\partial \varphi _{k}}\right) +\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} \left( -{\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\varphi _{k}}{\varvec{\Sigma} }^{-1}\right) {\varvec{V}}\\&\quad+\frac{2}{\alpha ^{2}}{\varvec{V}}^{\top} \left( {\varvec{\Sigma} }^{-1}\left( \frac{\partial ^{2}{\varvec{\Sigma} }}{\partial \varphi _{j}\partial \varphi _{k}}{\varvec{\Sigma} }^{-1}+\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}\left( -{\varvec{\Sigma} }^{-1} \frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{k}}{\varvec{\Sigma} }^{-1}\right) \right) \right) {\varvec{V}}, \quad j,\,k=1,\,2,\,3. \end{aligned}$$

Then, with \({\ddot{\ell} }_{{\varphi }_{1}{\varphi }_{2}}={\ddot{\ell} }_{{\varphi }_{2}{\varphi }_{1}},\,{\ddot{\ell} }_{{\varphi }_{1}{\varphi }_{3}}={\ddot{\ell} }_{{\varphi }_{3}{\varphi }_{1}}\) and \({\ddot{\ell} }_{{\varphi }_{2}{\varphi }_{3}}={\ddot{\ell} }_{{\varphi }_{3}{\varphi }_{2}},\) we have

$$\begin{aligned} \ddot{\ell }_{{\varphi }_1{\varphi }_1}&= \frac{1}{2}\text {tr}\left( ({\varvec{\Sigma }}^{-1})^2\right) -\frac{2}{\alpha ^2}{\varvec{V}}^\top \left( ({\varvec{\Sigma }}^{-1})^3+({\varvec{\Sigma}} ^{-1})^2\right) {\varvec{V}},\\ \ddot{\ell }_{{\varphi }_1{\varphi }_2}&= \frac{1}{2}{\text {tr}}\left( {\varvec{\Sigma}} ^{-1}{\varvec{R}}{\varvec{\Sigma }}^{-1}\right) -\frac{2}{\alpha ^2}{\varvec{V}}^\top \left( {\varvec{\Sigma}} ^{-1}{\varvec{R}}({\varvec{\Sigma}} ^{-1})^2+\left( {\varvec{\Sigma}} ^{-1}\right) ^2{\varvec{R}}{\varvec{\Sigma }}^{-1}\right) {\varvec{V}},\\ \ddot{\ell }_{{\varphi }_1{\varphi }_3}&= \frac{\varphi _2}{2}{\text {tr}}\left( {\varvec{\Sigma}} ^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma}} ^{-1}\right) -\frac{2\varphi _2}{\alpha ^2}{\varvec{V}}^\top \left( {\varvec{\Sigma}} ^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}({\varvec{\Sigma}} ^{-1})^2+({\varvec{\Sigma }}^{-1})^2\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma }}^{-1}\right) {\varvec{V}},\\ \ddot{\ell }_{{\varphi }_2{\varphi }_2}&= \frac{1}{2}\text {tr}\left( {\varvec{\Sigma}} ^{-1}{\varvec{R}}{\varvec{\Sigma }}^{-1}{\varvec{R}}\right) -\frac{4}{\alpha ^2}{\varvec{V}}^\top \left( {\varvec{\Sigma}} ^{-1}{\varvec{R}}{\varvec{\Sigma }}^{-1}{\varvec{R}}{\varvec{\Sigma }}^{-1}\right) {\varvec{V}},\\ \ddot{\ell }_{{\varphi }_2{\varphi }_3}&= -\frac{1}{2}\text {tr}\left( -\varphi _2{\varvec{\Sigma }}^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma}} ^{-1}{\varvec{R}}+{\varvec{\Sigma }}^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}\right) +\frac{2}{\alpha ^2}{\varvec{V}}^\top \left( -\varphi _2{\varvec{\Sigma}} ^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma}} ^{-1}{\varvec{R}}{\varvec{\Sigma }}^{-1}\right) {\varvec{V}}\\&\quad+\frac{2}{\alpha ^2}{\varvec{V}}^\top {\varvec{\Sigma}} ^{-1}\left( \frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma }}^{-1}+{\varvec{R}}\left( -\varphi _2{\varvec{\Sigma }}^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma }}^{-1}\right) \right) {\varvec{V}},\\ \ddot{\ell }_{{\varphi }_3{\varphi }_3}&= -\frac{\varphi _2}{2}{\text {tr}}\left( -\varphi _2{\varvec{\Sigma }}^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma}} ^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}+{\varvec{\Sigma }}^{-1}\frac{\partial ^2{\varvec{R}}}{\partial \varphi _3^2}\right) -\frac{2\varphi _2^2}{\alpha ^2}{\varvec{V}}^\top \left( {\varvec{\Sigma }}^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma}} ^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma }}^{-1}\right) {\varvec{V}}\\&\quad+\frac{2\varphi _2}{\alpha ^2}{\varvec{V}}^\top {\varvec{\Sigma }}^{-1}\left( \frac{\partial ^2{\varvec{R}}}{\partial \varphi _3^2}{\varvec{\Sigma }}^{-1}-\varphi _2\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma }}^{-1}\frac{\partial {\varvec{R}}}{\partial \varphi _3}{\varvec{\Sigma }}^{-1}\right) {\varvec{V}}. \end{aligned}$$

Appendix 3: Expected information matrix

The expected Fisher information matrix is \({\varvec{I}}({\varvec{\theta} }) = {\text {E}}(-{\varvec{\ddot{\ell} }}({\varvec{\theta} })).\) For the BS log-linear spatial model, this matrix is given by

$$\begin{aligned} {\varvec{I}}({\varvec{\theta} })=\left( \begin{array}{ccc} I_{\alpha \alpha } & I_{\alpha \mu } & {\varvec{I}}_{\alpha {\varvec{\varphi} }}\\ I_{\mu \alpha } & I_{\mu \mu } & {\varvec{I}}_{\mu {\varvec{\varphi} }}\\ {\varvec{I}}_{\varvec{\varphi }\alpha } &{\varvec{I}}_{\varvec{\varphi }\mu }&{\varvec{I}}_{\varvec{\varphi }{\varvec{\varphi} }} \end{array} \right) . \end{aligned}$$

Since the model error \({\varvec{\varepsilon} }\sim {\text {log}}{\text{-BS}}_{n}(\alpha {\mathbf{1}},\,{\mathbf{0}},\,{\varvec{\Sigma} }),\) we have that \(({2}/{\alpha }){\varvec{V}}\sim {\text {N}}_{n}({\mathbf{0}},\,{\varvec{\Sigma} }),\) with \({\varvec{V}}\) given in (19). Then (see Muirhead 1982), \(W = ({2}/{\alpha }){\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}({2}/{\alpha }){\varvec{V}}\sim \chi _{n}^{2},\) where \(\chi _{n}^{2}\) denotes the chi-squared distribution with n degrees of freedom, and then, \({\text {E}}(W)=n.\) Thus,

$$\begin{aligned} I_{\alpha \alpha }={\text {E}}\left(-{\ddot{\ell} }_{\alpha \alpha }\right)={\text {E}}\left( - \frac{n}{\alpha ^{2}}+\frac{12}{\alpha ^{4}}{\varvec{V}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{V}}\right) =\frac{2n}{\alpha ^{2}}. \end{aligned}$$

Moreover, by using \({\text {E}}\left( {\varvec{X}}^{\top} {\varvec{A}}{\varvec{X}}\right) =( {\text {E}}( {\varvec{X}})) ^{\top} {\varvec{A}}( {\text {E}}( {\varvec{X}})) +{\text {tr}}( {\varvec{A}}{\varvec{C}}),\) where \({\varvec{C}}\) is the covariance matrix of \({\varvec{X}}\) (see Kendrick 2002), \({\varvec{I}}_{\varvec{\varphi }{\varvec{\varphi} }} = (I_{\varphi _{j} \varphi _{k}})\) is a symmetric \(3\times 3\) matrix with elements

$$\begin{aligned} I_{\varphi _{j} \varphi _{k}}&= {\text {E}}\left(-{\ddot{\ell} }_{\varphi _{j}\varphi _{k}}\right)=\frac{1}{2}{\text {tr}}\left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma }}}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1} \frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{k}}\right) , \quad j,\,k=1,\,2,\,3. \end{aligned}$$

In addition, \({\varvec{I}}_{\varvec{\varphi }\alpha } = {\varvec{I}}_{\alpha {\varvec{\varphi} }}^{\top} = (I_{\varphi _{1} \alpha },\, I_{\varphi _{2} \alpha },\, I_{\varphi _{3} \alpha })^{\top}\) is a \(3\times 1\) vector with elements given by

$$\begin{aligned} I_{\varphi _{j}\alpha }={\text {E}}\left(-{\ddot{\ell} }_{\varphi _{j}\alpha }\right)=\frac{1}{\alpha }{\text {E}}\left( \left( \frac{2}{\alpha }{\varvec{V}}\right) ^{\top} \left( {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}\right) \left( \frac{2}{\alpha }{\varvec{V}}\right) \right) =\frac{1}{\alpha }{\text {tr}}\left({ \varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _j}\right) , \quad j=1,\,2,\,3, \end{aligned}$$

where \({\text {tr}}({\varvec{A}})\) denotes the trace of the matrix \({\varvec{A}}.\) To obtain the elements \(I_{\alpha \mu },\, I_{\mu \mu }\) and \(I_{\mu {\varvec{\varphi} }},\) for \({(y_{i}-\mu )}/{2}\) expected to be small enough with \(\cosh (\cdot )\approx 1\), using expansion in Taylor series for \(\cosh (\cdot )\) and \(\alpha\) to be small enough, we have

$$\begin{aligned} I_{\alpha \mu }&= I_{\mu \alpha }={\text {E}}\left( -{\ddot{\ell} }_{\alpha \mu }\right) ={\text {E}}\left( \frac{4}{\alpha ^{3}}{\varvec{U}}^{\top} {\varvec{\Sigma} }^{-1}{\varvec{V}}\right) \approx {\text {E}}\left( \frac{4}{\alpha ^{3}}{\mathbf{1}}^{\top} {\varvec{\Sigma }}^{-1}{\varvec{V}}\right) =0,\\ I_{\mu \mu }&= {\text {E}}\left(-{\ddot{\ell} }_{\mu \mu }\right)\approx \frac{1}{4}{\text {E}}\left( \left( \frac{2}{\alpha }{\varvec{V}}\right) ^{\top} {\varvec{\Sigma} }^{-1}\left( \frac{2}{\alpha }{\varvec{V}}\right) \right) +{\text {E}}\left( \frac{1}{\alpha ^{2}}{\mathbf{1}}^{\top} {\varvec{\Sigma} }^{-1}{\mathbf{1}}-\frac{n}{4}\right) =\frac{1}{\alpha ^{2}}{\mathbf{1}}^{\top} {\varvec{\Sigma }}^{-1}{\mathbf{1}}. \end{aligned}$$

Furthermore, \({\varvec{I}}_{\varvec{\varphi }\mu } = {\varvec{I}}_{\mu {\varvec{\varphi} }}^{\top} = (I_{\varphi _{1}\mu },\, I_{\varphi _{2}\mu },\, I_{\varphi _{3}\mu })^{\top}\) is a \(3\times 1\) vector with elements given by

$$\begin{aligned} I_{\mu \varphi _{j}}={\text {E}}\left(-{\ddot{\ell} }_{\mu \varphi _{j}}\right)\approx \frac{1}{\alpha }{\text {E}}\left( \left( {\mathbf{1}}^{\top} {\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}\right) \left( \frac{2}{\alpha }{\varvec{V}}\right) \right) =0, \quad j=1,\,2,\,3. \end{aligned}$$

Appendix 4: Score vector \({\varvec{U}}({\varvec{\omega} })\) and matrix \({\varvec{G}}({\varvec{\omega} })\)

Score vector used in the local influence method is given by \({\varvec{U}}({\varvec{\omega} })=\left( {\partial {\varvec{V}}_{\varvec{\omega }}}/{\partial {\varvec{\omega} }^{\top} }\right) ^{\top} \left( 2{\varvec{\Sigma} }^{-1}{\varvec{V}_{\omega }}\right) +({1}/{2}){\varvec{A}}{\varvec{T}_{\omega }},\)where \({\varvec{T}_{\omega }}=({\varvec{T}}_{\omega _{1}},\ldots ,{\varvec{T}}_{\omega _{n}}),\) with \({\varvec{T}}_{\omega _{i}}=\tanh({(y_{i}+{\varvec{A}}_{i}{\varvec{\omega} }-\mu )}/{2}),\) and \({\varvec{A}}_{i}\) is the ith row of the matrix \({\varvec{A}}.\) For \(\cosh ({(y_{i}+{\varvec{a}}_{i}{\varvec{\omega} }-\mu )}/{2})\approx 1,\) with \(i=1,\ldots ,n,\) we get

$$\begin{aligned} \frac{\partial {\varvec{V}}_{\varvec{\omega }}}{\partial {\varvec{\omega} }^{\top} } =\frac{1}{2} \left( \begin{array}{ccc} \cosh \left( \frac{y_{1}+{\varvec{A}_{1}}{\varvec{\omega} }-\mu }{2}\right) \sigma _{11} &\cdots & \cosh \left( \frac{y_{1}+{\varvec{A}_{1}}{\varvec{\omega} }-\mu }{2}\right) \sigma _{1n}\\ \vdots & \ddots & \vdots \\ \cosh \left( \frac{y_{n}+{\varvec{A}_{n}}{\varvec{\omega} }-\mu }{2}\right) \sigma _{n1} & \cdots & \cosh \left( \frac{y_{n}+{\varvec{A}_{n}}{\varvec{\omega} }-\mu }{2}\right) \sigma _{nn}\\ \end{array} \right) =\frac{1}{2}{\varvec{A}}, \end{aligned}$$

where \(\sigma _{ij}\) is the (ij) element of the matrix \({\varvec{A}},\) for \(i,\,j=1,\ldots ,n.\) Furthermore, for \(\cosh ({(y_{i}+{\varvec{a}}_{i}{\varvec{\omega} }-\mu )}/{2})\approx 1,\) with \(i=1,\ldots ,n,\) \({\varvec{T}_{\omega }}\) can be approximated by \({\varvec{V}_{\omega }},\) from which it follows that \({\varvec{U}}({\varvec{\omega} })=({1}/{2}){\varvec{A}}{\varvec{V}_{\omega }}-({2}/{\alpha ^{2}}){\varvec{A}}{\varvec{\Sigma} }^{-1}{\varvec{V}_{\omega }}.\) Thus,

$$\begin{aligned} {\varvec{U}}({\varvec{\omega }}){\varvec{U}}^{\top} ({\varvec{\omega} })&= \left( \frac{1}{2}{\varvec{A}}{\varvec{V}_{\omega }}-\frac{2}{\alpha ^{2}}{\varvec{A}}{\varvec{\Sigma} }^{-1}{\varvec{V}_{\omega }}\right) \left( \frac{1}{2}{\varvec{A}}{\varvec{V}_{\omega }}-\frac{2}{\alpha ^{2}}{\varvec{A}}{\varvec{\Sigma} }^{-1}{\varvec{V}_{\omega }}\right) ^{\top} \\&= \frac{\alpha ^{2}}{16}{\varvec{A}}\left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) \left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) ^{\top} {\varvec{A}}-\frac{1}{4}{\varvec{A}}\left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) \left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) ^{\top} {\varvec{\Sigma }}^{-1}{\varvec{A}}\\&\quad-\frac{1}{4}{\varvec{A}}{\varvec{\Sigma} }^{-1}\left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) \left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) ^{\top} {\varvec{A}}+\frac{1}{\alpha ^{2}}{\varvec{A}}{\varvec{\Sigma} }^{-1}\left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) \left( \frac{2}{\alpha }{\varvec{V}_{\omega }}\right) ^{\top} {\varvec{\Sigma} }^{-1}{\varvec{A}}. \end{aligned}$$

Therefore, \({\varvec{G}}({\varvec{\omega} })={\text {E}}\left( {\varvec{U}}({\varvec{\omega} }){\varvec{U}}^{\top} ({\varvec{\omega} })\right) = {\varvec{A}}\left( \frac{\alpha }{4}{\varvec{\Sigma} }^{{\frac{1}{2}}}-{\frac{1}{\alpha}}{\varvec{\Sigma} }^{{-\frac{1}{2}}}\right) ^{2}{\varvec{A}}.\) To find the appropriate perturbation, according to the methodology proposed by Zhu et al. (2007), it is necessary to find \({\varvec{A}},\) such that \({\varvec{G}}({\varvec{\omega} })=c{\varvec{I}}_{n},\) for \(c>0.\) Considering \(c=1,\) then \({\varvec{A}}\) must satisfy \((({\alpha }/{4}){\varvec{\Sigma} }^{({1}/{2})}-({1}/{\alpha }){\varvec{\Sigma} }^{-\frac{1}{2}})^2=({\varvec{A}}^{-1})^2.\) A solution of the equation above is given by \({\varvec{A}}=(({\alpha }/{4}){\varvec{\Sigma} }^{\frac{1}{2}}-({1}/{\alpha }){\varvec{\Sigma} }^{-\frac{1}{2}})^{-1}.\) Then, \(\tilde{\varvec{\omega }}=(({\alpha }/{4}){\varvec{\Sigma} }^{\frac{1}{2}}-({1}/{\alpha }){\varvec{\Sigma} }^{-\frac{1}{2}})^{-1}{\varvec{\omega }}\) is an appropriate perturbation for the BS log-linear spatial model.

Appendix 5: The perturbation matrix

The perturbation matrix for the BS log-linear spatial model obtained from (20) is given by

$$\begin{aligned} \Delta _{\mu }=\frac{\partial \ell ({\varvec{\theta} }|{\varvec{\omega} })}{\partial \mu \partial {\varvec{\omega} }^{\top} }=\frac{\partial {\varvec{V}}_{\varvec{\omega} }^{\top} }{\partial \mu }\left( \frac{-2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{2}{\varvec{I}_{n}}\right) {\varvec{A}}=- \frac{1}{2}{\varvec{U}}_{\varvec{\omega} }^{\top} \left( \frac{-2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{2}{\varvec{I}_{n}}\right) {\varvec{A}}, \end{aligned}$$

where \({\varvec{U}_{\omega }}=({\varvec{U}}_{\omega _{1}},\ldots ,{\varvec{U}}_{\varvec \omega _{n}}),\) with \({\varvec{U}}_{\omega _{i}}=\cosh (({y_{i}+{\varvec{a}_{i}{\varvec{\omega}} }-\mu )}/{2}),\) for \(i=1,\ldots ,n.\) Thus, the results presented in (32), (33) and (34) are obtained, for \(\cosh ({(y_{i}+{\varvec{a}_{i}\varvec\omega }-\mu )}/{2})\approx 1,\) as

$$\begin{aligned} \Delta _{\mu }&= \frac{\partial \ell ({\varvec{\theta} }|{\varvec{\omega} })}{\partial \mu \partial {\varvec{\omega} }^{\top} }\approx {\mathbf{1}}^{\top} \left( \frac{1}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}-\frac{1}{4}{\varvec{I}_{n}}\right) {\varvec{A}},\\ \Delta _{\alpha }&= \frac{\partial \ell ({\varvec{\theta} }|{\varvec{\omega} })}{\partial \alpha \partial {\varvec{\omega} }^{\top} }=\frac{\partial {\varvec{V}}_{\varvec{\omega} }^{\top} }{\partial \alpha }\left( - \frac{2}{\alpha ^{2}}{\varvec{\Sigma }}^{-1}+\frac{1}{2}{\varvec{I}_{n}}\right) {\varvec{A}}\\&\quad+{\varvec{V}}_{\varvec{\omega} }^{\top} \frac{\partial }{\partial \alpha }\left( \left( \frac{-2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{2}{\varvec{I}_{n}}\right) {\varvec{A}}\right) \\&={\varvec{D}}^{\top} \left( \frac{-1}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{4}{\varvec{I}_{n}}\right) {\varvec{A}}\\&\quad+\left( \frac{4}{\alpha ^{3}}{\varvec{\Sigma} }^{-1}{\varvec{A}}+\left( -\frac{2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{2}{\varvec{I}_{n}}\right) {\varvec{A}}\left( \frac{1}{\alpha ^{2}}{\varvec{\Sigma} }^{-\frac{1}{2}}+\frac{1}{4}{\varvec{\Sigma} }^{\frac{1}{2}}\right) {\varvec{A}}\right) , \end{aligned}$$

where \({\varvec{D}}=( D_{1},\ldots ,D_{n}) ^{\top},\) with \(D_{i}={\varvec{l}}_{i}\varvec\omega\) and \({\varvec{l}}_{i}\) being the ith row of the matrix

$$\begin{aligned} {\varvec{L}} = {\varvec{A}}\left( \frac{1}{\alpha ^{2}}{\varvec{\Sigma} }^{-\frac{1}{2}}+\frac{1}{4}{\varvec{\Sigma} }^{\frac{1}{2}}\right) {\varvec{A}}. \end{aligned}$$

In addition,

$$\begin{aligned} \Delta _{\varphi _{j}}&=\frac{\partial \ell ({\varvec{\theta} }|{\varvec{\omega} })}{\partial {{\varphi} _{j}}\partial {\varvec{\omega} }^{\top} }=\frac{\partial {\varvec{V}}_{\varvec{\omega} }^{\top} }{\partial \varphi _{j}}\left( - \frac{2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{2}{\varvec{I}_{n}}\right) {\varvec{A}}\\&\quad+{\varvec{V}}_{\varvec{\omega} }^{\top} \left( \frac{2}{\alpha ^{2}}{\varvec{\Sigma }}^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}{\varvec{A}}+\left( -\frac{2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{2}{\varvec{I}_{n}}\right) \frac{\partial {\varvec{A}}}{\partial \varphi _{j}}\right) \\&= {\varvec{M}}^{\top} \left( \frac{-1}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}+\frac{1}{4}{\varvec{I}_{n}}\right) {\varvec{A}}+{\varvec{V}}_{\varvec{\omega} }^{\top} \left( \frac{2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}\frac{\partial {\varvec{\Sigma} }}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-1}\right) {\varvec{A}}\\&\quad+\left(\frac{1}{2}{\varvec{I}_{n}}- \frac{2}{\alpha ^{2}}{\varvec{\Sigma} }^{-1}\right) {\varvec{A}}\left( \frac{1}{\alpha }{\varvec{\Sigma }}^{-\frac{1}{2}}\frac{\partial {\varvec{\Sigma }}^{\frac{1}{2}}}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-\frac{1}{2}}+\frac{\alpha }{4}\frac{\partial {\varvec{\Sigma} }^{\frac{1}{2}}}{\partial \varphi _{j}}\right) {\varvec{A}},\quad j = 1, 2, 3, \end{aligned}$$

where \({\varvec{M}}=( m_{1},\ldots ,m_{n}) ^{\top},\) with \(m_{i}={\varvec{l}}_{i}{\varvec{\omega} }\) and \({\varvec{l}}_{i}\) being the ith row of matrix

$$\begin{aligned} {\varvec{L}} = {\varvec{A}}\left({\frac{\alpha }{4}}\frac{\partial {\varvec{\Sigma} }^{\frac{1}{2}}}{\partial \varphi _{j}}-{\frac{1}{\alpha}}{\varvec{\Sigma} }^{-\frac{1}{2}}\frac{\partial {\varvec{\Sigma} }^{\frac{1}{2}}}{\partial \varphi _{j}}{\varvec{\Sigma} }^{-\frac{1}{2}}\right) {\varvec{A}}, \quad j=1,\,2,\,3. \end{aligned}$$

Details about \({\partial {\varvec{\Sigma} }^{\frac{1}{2}}}/{\partial \varphi _{j}}\) can be found in De Bastiani et al. (2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Papani, F., Uribe-Opazo, M.A., Leiva, V. et al. Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stoch Environ Res Risk Assess 31, 105–124 (2017). https://doi.org/10.1007/s00477-015-1204-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1204-4

Keywords

Navigation