Skip to main content
Log in

Exact black holes and universality in the backreaction of non-linear sigma models with a potential in (A)dS4.

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to construct accelerated, stationary and axisymmetric exact solutions of the Einstein theory with self interacting scalar fields in (A)dS4. To warm up, the backreaction of the (non)-minimally coupled scalar field is solved, the scalar field equations are integrated and all the potentials compatible with the metric ansatz and Einstein gravity are found. With these results at hand the non-linear sigma model is tackled. The scalar field Lagrangian is generic; neither the coupling to the curvature, neither the metric in the scalar manifold nor the potential, are fixed ab initio. The unique assumption in the analysis is the metric ansatz: it has the form of the most general Petrov type D vacuum solution of general relativity; it is a a cohomogeneity two Weyl rescaling of the Carter metric and therefore it has the typical Plebanski-Demianski form with two arbitrary functions of one variable and one arbitrary function of two variables. It is shown, by an straightforward manipulation of the field equations, that the metric is completely integrable without necessity of specifiying anything in the scalar Lagrangian. This results is that the backreaction of the scalar fields, within this class of metrics, is universal. The metric functions generically show an explicit dependence on a dynamical exponent that allows to smoothly connect this new family of solutions with the actual Plebanski-Demianski spacetime. The remaining field equations imply that the scalar fields follow geodesics in the scalar manifold with an affine parameter given by a non-linear function of the space-time coordinates and define the on-shell form of the potential plus a functional equation that it has to satisfy. To further find the exact form of the potential the simplest case associated to a flat scalar manifold is taken. The most general potential compatible with the Einstein theory and the metric ansatz is constructed in this case and it is shown that it has less symmetry than the maximal compact subgroup of the coset construction. Finally, the most general family of (A)dS4 static hairy black holes is explicitly constructed and its properties are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Martí, R. Troncoso and J. Zanelli, de Sitter black hole with a conformally coupled scalar field in four-dimensions, Phys. Rev. D 67 (2003) 024008 [hep-th/0205319] [INSPIRE].

    ADS  Google Scholar 

  2. C. Martí, J.P. Staforelli and R. Troncoso, Topological black holes dressed with a conformally coupled scalar field and electric charge, Phys. Rev. D 74 (2006) 044028 [hep-th/0512022] [INSPIRE].

    ADS  Google Scholar 

  3. E. Radu and E. Winstanley, Conformally coupled scalar solitons and black holes with negative cosmological constant, Phys. Rev. D 72 (2005) 024017 [gr-qc/0503095] [INSPIRE].

    ADS  Google Scholar 

  4. A. Anabalon and H. Maeda, New charged black holes with conformal scalar hair, Phys. Rev. D 81 (2010) 041501 [arXiv:0907.0219] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. C. Charmousis, T. Kolyvaris and E. Papantonopoulos, Charged C-metric with conformally coupled scalar field, Class. Quant. Grav. 26 (2009) 175012 [arXiv:0906.5568] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S.G. Saenz and C. Martí, Anti-de Sitter massless scalar field spacetimes in arbitrary dimensions, arXiv:1203.4776 [INSPIRE].

  8. A. Anabalon, F. Canfora, A. Giacomini and J. Oliva, Black holes with primary hair in gauged N = 8 supergravity, arXiv:1203.6627 [INSPIRE].

  9. T. Hertog, Towards a novel no-hair theorem for black holes, Phys. Rev. D 74 (2006) 084008 [gr-qc/0608075] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Ghez, M. Morris, E. Becklin, T. Kremenek and A. Tanner, The accelerations of stars orbiting the Milky Way’s central black hole, Nature 407 (2000) 349 [astro-ph/0009339] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Ghez, S. Salim, S.D. Hornstein, A. Tanner, M. Morris, et al., Stellar orbits around the galactic center black hole, Astrophys. J. 620 (2005) 744 [astro-ph/0306130] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Ghez, S. Salim, N. Weinberg, J. Lu, T. Do, et al., Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits, Astrophys. J. 689 (2008) 1044 [arXiv:0808.2870] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L. Sadeghian and C.M. Will, Testing the black hole no-hair theorem at the galactic center: perturbing effects of stars in the surrounding cluster, Class. Quant. Grav. 28 (2011) 225029 [arXiv:1106.5056] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C.M. Will, Testing the general relativistic no-hair theorems using the galactic center black hole SgrA*, arXiv:0711.1677 [INSPIRE].

  16. P. Pani and V. Cardoso, Are black holes in alternative theories serious astrophysical candidates? the case for Einstein-Dilaton-Gauss-Bonnet black holes, Phys. Rev. D 79 (2009) 084031 [arXiv:0902.1569] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Jordan frame supergravity and inflation in NMSSM, Phys. Rev. D 82 (2010) 045003 [arXiv:1004.0712] [INSPIRE].

    ADS  Google Scholar 

  18. A. Anabalon and A. Cisterna, Asymptotically (anti) de Sitter black holes and wormholes with a self interacting scalar field in four dimensions, Phys. Rev. D 85 (2012) 084035 [arXiv:1201.2008] [INSPIRE].

    ADS  Google Scholar 

  19. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].

  21. S.-S. Lee, Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions, Phys. Rev B 80 (2009) 165102 [arXiv:0905.4532].

    Article  ADS  Google Scholar 

  22. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].

    ADS  Google Scholar 

  24. J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Conde and A.V. Ramallo, On the gravity dual of Chern-Simons-matter theories with unquenched flavor, JHEP 07 (2011) 099 [arXiv:1105.6045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).

    Book  MATH  Google Scholar 

  31. B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].

    MATH  Google Scholar 

  32. J. Plebanski, A class of solutions of Einstein-Maxwell equations, Ann. Phys. 90 (1975) 196 .

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. W. Chen and H. Lü, Kerr-Schild structure and harmonic 2-forms on (A)dS-Kerr-NUT metrics, Phys. Lett. B 658 (2008) 158 [arXiv:0705.4471] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J. Bicak and V. Pravda, Spinning c metric: radiative space-time with accelerating, rotating black holes, Phys. Rev. D 60 (1999) 044004 [gr-qc/9902075] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. O.J. Dias and J.P. Lemos, Pair of accelerated black holes in Anti-de Sitter background: AdS c metric, Phys. Rev. D 67 (2003) 064001 [hep-th/0210065] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. J. Griffiths, P. Krtous and J. Podolsky, Interpreting the C-metric, Class. Quant. Grav. 23 (2006) 6745 [gr-qc/0609056] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. W. Kinnersley and M. Walker, Uniformly accelerating charged mass in general relativity, Phys. Rev. D 2 (1970) 1359 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. J. Bicak, Gravitational radiation from uniformly accelerated particles in general relativity, Proc. R. Soc. Lond. 302 (1968) 201.

    Article  ADS  Google Scholar 

  40. H. Lü, J. Mei and C. Pope, New black holes in five dimensions, Nucl. Phys. B 806 (2009) 436 [arXiv:0804.1152] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Kubiznak, Hidden symmetries of higher-dimensional rotating black holes, arXiv:0809.2452 [INSPIRE].

  42. A. Anabalon and H. Maeda, New charged black holes with conformal scalar hair, Phys. Rev. D 81 (2010) 041501 [arXiv:0907.0219] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. A. Anabalon and H. Maeda, to appear.

  44. P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. W. Kinnersley, Type D vacuum metrics, J. Math. Phys. 10 (1969) 1195 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. S. Benenti and M. Francaviglia, Remarks on certain separability structures and their applications to general relativity, Gen. Rel. Grav. 10 (1979) 79.

    Article  ADS  MATH  Google Scholar 

  47. J. Podolsky and J.B. Griffiths, Exact space-times in Einstein’s general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2009).

  48. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].

    Article  ADS  Google Scholar 

  49. T. Houri, D. Kubiznak, C.M. Warnick and Y. Yasui, Local metrics admitting a principal Killing-Yano tensor with torsion, arXiv:1203.0393 [INSPIRE].

  50. M. Durkee, Geodesics and symmetries of doubly-spinning black rings, Class. Quant. Grav. 26 (2009) 085016 [arXiv:0812.0235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Anabalón.

Additional information

ArXiv ePrint: 1204.2720

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anabalón, A. Exact black holes and universality in the backreaction of non-linear sigma models with a potential in (A)dS4.. J. High Energ. Phys. 2012, 127 (2012). https://doi.org/10.1007/JHEP06(2012)127

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)127

Keywords

Navigation