Skip to main content

Advertisement

Log in

Increased Drought and Salinity Tolerance in Citrus aurantifolia (Mexican Lemon) Plants Overexpressing Arabidopsis CBF3 Gene

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Citrus are a globally important fruit crop. Abiotic stressors such as drought and salinity adversely affect physiological citrus performance and survival. With the aim of improving drought tolerance in citrus plants, we constructed transgenic lines of Citrus lemon overexpressing the Arabidopsis transcription factor CBF3. Molecular, physiological, and quantitative real-time analyses showed high expression of AtCBF3 in three selected transgenic lines. During a 15-day treatment of water deficit by cessation of irrigation, the transgenic lines LM2 and LM14 showed lower stomatal conductance and transpiration paired with lower photosynthesis, whereas transgenic line LM7 maintained its photosynthesis, declining stomatal conductance, and transpiration compared to WT plants, which is manifested into more efficient water use. The genes CsRafS1 and CsGolS1 showed similar or greater expression in one of the transgenic lines with respect to control plants. Moreover, transgenic lines were more tolerant to saline stress and presented a greener phenotype with increased chlorophyll content in leaf discs compared to WT plants. In addition, a lower electrical conductivity in solution was observed in transgenic lines. Furthermore, all transgenic lines exhibited significantly less accumulation of reactive oxygen species than WT plants. Together, these results suggest the potential for heterologous expression of the AtCBF3 gene to mediate tolerance to hydric and saline stress in citrus plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal PK, Gupta K, Lopato S, Agarwal P (2017) Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68:2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Mannan A, El Oirdi M, Waheed A, Mirza B (2012) Agrobacterium-mediated transformation of rough lime (Citrus jambhiri Lush) with yeast HAL2 gene. BMC Research Notes 5:285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Gerding X, Cortés-Bullemore R, Medina C, Romero-Romero JL, Inostroza-Blancheteau C, Aquea F, Arce-Johnson P (2015) Improved salinity tolerance in Carrizo Citrange rootstock through overexpression of glyoxalase system genes. Biomed Res Int 2015:827951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Cañon P, Aquea F, Rodríguez-Hoces de la Guardia A, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant 149:329–339

    PubMed  Google Scholar 

  • Carvalho L, Santos S, Velile B, Amancio S (2008) Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress. J Plant Physiol 165:1300–1312

    Article  CAS  PubMed  Google Scholar 

  • Cervera M, Pina J, Juarez J, Navarro L, Peña L (1998) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  PubMed  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Peña L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. Journal of Horticultural Science and Biotechnology 75:26–30

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2009) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3 in soybean (Glycine max L.). J Exp Bot 60:121–135

    Article  CAS  PubMed  Google Scholar 

  • Dodd I, Ryan A (2016) Whole-Plant Physiological Responses to Water-Deficit Stress. https://doi.org/10.1002/9780470015902.a0001298.pub3

  • Dou H, Xv K, Meng Q, Li G, Yang X (2015) Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant Cell and Environment 38:61–72

    Article  CAS  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Khan E, Hu S, Fan Q, Liu J (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74:106–113

    Article  CAS  Google Scholar 

  • Gimeno V, Syvertsen J, Nieves M, Simón I, Martínez V, García-Sánchez F (2009) Additional nitrogen fertilization affects salt tolerance of lime trees on different rootstocks. Sci Hortic 121:298–305

    Article  CAS  Google Scholar 

  • Govind K, Neha P, Sushma R, Sanjeev K, Major S (2013) Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014, 2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 701596

  • Hiscox J, Israelstam G (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Candian Journal of Botany 57:1332–1334

    Article  CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol Plant Mol Biol 24:519–570

    Article  CAS  Google Scholar 

  • Jia H, Zhang Y, Xu J, White F, Jones J, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lenka S, Muthusamy S, Chinnusamy V, Bansal C, Kailash C (2018) Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol Biotechnol 60:350–361

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Molinari H, Marur C, Bespalhok Filho J, Kobayashi A, Pileggi M, Leite J, Pereira L, Vieira L (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliate L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozak K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polle A, Chen SL, Eckert C, Harfouche A (2019) Engineering drought resistance in forest trees. Front Plant Sci 9:1875

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013) Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiology Biochemistry 69:90–100

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ballesta M, Rodrigo M, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from Citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. Journal of the Agriculture and Food Chemistry 52:1950–1957

    Article  CAS  Google Scholar 

  • Sanders GJ, Arndt SK (2012) Osmotic adjustment under drought conditions. In: Aroca R (ed) Plant responses to drought stress. Springer, Heidelberg

    Google Scholar 

  • Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med (Berl) 84:901–910

    Article  CAS  Google Scholar 

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell N, Clark D, Dankers R, Eisner S, Fekete B, Colon-Gonzalez F, Gosling S, Kim H, Liu X, Masaki Y, Portmann F, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci U S A 111:3245–3250

    Article  CAS  PubMed  Google Scholar 

  • Shah SH, Ali S, Qureshi AA, Zia MA, Din JU, Ali GM (2017) Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a stress inducible promoter. Environ Sci Pollut Res Int 24:18536–18553

    Article  PubMed  Google Scholar 

  • Silva-Ortega C, Ochoa-Alfaro A, Reyes-Agüero J, Aguado-Santa Cruz G, Jiménez-Bremont J (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek S, Yadav S, Pareek A, Reddy M, Sopory S (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG (2019) Acquiring control: the evolution of stomatal signaling pathway. Trends Plant Sci 24:342–351

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, Murata Y, Shimazaki K (2013) bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Sci Signal 8:ra48

    Google Scholar 

  • Taylor NJ, Annandale JG, Vahrmeijer JT (2014) Understanding the dynamics of citrus water use. Acta Hortic 1058:245–251

    Article  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge D (1997) Subcellular localization of H2O2in plants. H2O2accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Wei T, Deng K, Liu D, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016) Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell and Physiology 57:1593–1609

    Article  CAS  Google Scholar 

  • Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalti. Plant Cell Rep 30:1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Zaher-Ara T, Boroomand N, Sadat-Hosseini M (2016) Physiological and morphological response to drought stress in seedlings of ten citrus. Trees 30:985–993

    Article  CAS  Google Scholar 

  • Zhang J (2014) Lasiodiploidia theobromae in Citrus fruit (diploidia stem-end rot). Postharvest Decay:309–335

  • Zhao C, Zhu JK (2016) The broad roles of CBF genes: from development to abiotic stress. Plant Signal Behaviour 11(8):e1215794

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Valeria M. Borjas Mendez and Sandy Rojas for technical assistance. We thank Alyssa Grube for assistance in language support.

Authors and Contributors

JLRR conceived the study and designed the experiments with PAJ. JLRR, CIB, MRD, CE, and JPM performed the experiments and analyzed the data. JLRR, CIB, FA, and PAJ drafted the paper. All authors contributed to the revision of the manuscript and approved the final version.

Funding

Jesús L. Romero-Romero was supported by PhD fellowship CONACYT (SC392465), COTEBAL: 1865 and CONICYT Doctoral Scholarship for foreigners (63130094). This work was supported by FONDECYT 1150220 to PAJ, CAPES FB-002-2014 to FA, and CONICYT PAI 82140040 to JPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Arce-Johnson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Romero, J.L., Inostroza-Blancheteau, C., Reyes-Díaz, M. et al. Increased Drought and Salinity Tolerance in Citrus aurantifolia (Mexican Lemon) Plants Overexpressing Arabidopsis CBF3 Gene. J Soil Sci Plant Nutr 20, 244–252 (2020). https://doi.org/10.1007/s42729-019-00130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00130-y

Keywords

Navigation