Skip to main content
Log in

Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The local influence method has proven to be a useful and powerful tool for detecting influential observations on the estimation of model parameters. This method has been widely applied in different studies related to econometric and statistical modelling. We propose a methodology based on the Lagrange multiplier method with a linear penalty function to assess local influence in the possibly heteroskedastic linear regression model with exact restrictions. The restricted maximum likelihood estimators and information matrices are presented for the postulated model. Several perturbation schemes for the local influence method are investigated to identify potentially influential observations. Three real-world examples are included to illustrate and validate our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atkinson AC, Riani M (2000) Robust diagnostic regression analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Atkinson AC, Riani M, Cerioli A (2004) Exploring multivariate data with the forward search. Springer, Berlin

    Book  MATH  Google Scholar 

  • Barros M, Galea M, González M, Leiva V (2010) Influence diagnostics in the tobit censored response model. Stat Methods Appl 19:379–397

    Article  MathSciNet  MATH  Google Scholar 

  • Billor N, Loynes RM (1993) Local influence: a new approach. Commun Stat Theory Methods 22:1595–1611

    Article  MathSciNet  MATH  Google Scholar 

  • Billor N, Loynes RM (1999) An application of the local influence approach to ridge regression. J Appl Stat 2:177–183

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee S, Hadi AS (1988) Sensitivity analysis in linear regression. Wiley, New York

    Book  MATH  Google Scholar 

  • Cook D (1986) Assessment of local influence. J R Stat Soc B 48:133–169

    MathSciNet  MATH  Google Scholar 

  • Chipman JS, Rao MM (1964) The treatment of linear restrictions in regression analysis. Econometrica 32:198–209

    Article  MathSciNet  MATH  Google Scholar 

  • Cook D, Weisberg S (1982) Residuals and influence in regression. Chapman & Hall, New York

    MATH  Google Scholar 

  • Cysneiros FJA, Paula GA (2005) Restricted methods in symmetrical linear regression models. Comput Stat Data Anal 49:689–708

    Article  MathSciNet  MATH  Google Scholar 

  • de Castro M, Galea M, Bolfarine H (2007) Local influence assessment in heteroscedastic measurement error models. Comput Stat Data Anal 52:1132–1142

    Article  MathSciNet  MATH  Google Scholar 

  • Díaz-García JA, Galea M, Leiva V (2003) Influence diagnostics for multivariate elliptic regression linear models. Commun Stat Theory Methods 32:625–641

    Article  MATH  Google Scholar 

  • Efron B, Hinkley D (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65:457–487

    Article  MathSciNet  MATH  Google Scholar 

  • Galea M, de Castro M (2012) Influence assessment in an heteroscedastic errors-in-variables model. Commun Stat Theory Methods 41:1350–1363

    Article  MathSciNet  MATH  Google Scholar 

  • Galea M, Diaz-Garcia JA, Vilca F (2008) Influence diagnostics in the capital asset pricing model under elliptical distributions. J Appl Stat 35:179–192

    Article  MathSciNet  Google Scholar 

  • Galea M, Paula GA, Bolfarine H (1997) Local influence for elliptical linear models. J R Stat Soc D 46:71–79

    Article  Google Scholar 

  • Greene WH (2007) Econometric analysis. Prentice Hall, New York

    Google Scholar 

  • Gross J (2003) Linear regression. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hocking R (2003) Methods and applications of linear models: regression and the analysis of variance. Wiley, New York

    Book  MATH  Google Scholar 

  • Judge GG, Hill RC, Griffiths WE, Lutkepohl H, Lee TC (1988) Introduction to the theory and practice of econometrics. Wiley, New York

    MATH  Google Scholar 

  • Kleiber C, Zeileis A (2008) Applied econometrics with R. Springer, Berlin

    Book  MATH  Google Scholar 

  • Leiva V, Barros M, Paula GA, Galea M (2007) Influence diagnostics in log-Birnbaum–Saunders regression models with censored data. Comput Stat Data Anal 51:5694–5707

    Article  MathSciNet  MATH  Google Scholar 

  • Leiva V, Rojas E, Galea M, Sanhueza A (2014) Diagnostics in Birnbaum–Saunders accelerated life models with an application to fatigue data. Appl Stoch Model Bus Ind 30:115–131

    Article  MathSciNet  Google Scholar 

  • Liu S (2000) On local influence for elliptical linear models. Stat Papers 41:211–224

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S (2002) Local influence in multivariate elliptical linear regression models. Linear Algebra Appl 354:211–224

    MathSciNet  Google Scholar 

  • Liu S (2004) On diagnostics in conditionally heteroskedastic time series models under elliptical distributions. J Appl Prob 41A:393–405

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S, Ahmed SE, Ma LY (2009) Influence diagnostics in the linear regression model with linear stochastic restrictions. Pak J Stat 25:647–662

    MathSciNet  Google Scholar 

  • Liu S, Ma T, Polasek W (2014) Spatial system estimators for panel models: a sensitivity and simulation study. Math Comput Simul 101:78–102

    Article  MathSciNet  Google Scholar 

  • Liu S, Neudecker H (2007) Local sensitivity of the restricted least squares estimator in the linear model. Stat Papers 48:525–525

    Article  Google Scholar 

  • Magnus JR, Neudecker H (1999) Matrix differential calculus with applications in statistics and econometrics. Wiley, Chichester

    MATH  Google Scholar 

  • Neudecker H, Liu S, Polasek W (1995) The hadamard product and some of its applications in statistics. Statistics 26:365–373

    Article  MathSciNet  MATH  Google Scholar 

  • Paula GA (1993) Assessing local influence in restricted regression models. Comput Stat Data Anal 16:63–79

    Article  MathSciNet  MATH  Google Scholar 

  • Paula GA, Cysneiros FJA (2010) Local influence under parameter constraints. Commun Stat Theory Methods 39:1212–1228

    Article  MathSciNet  MATH  Google Scholar 

  • Paula GA, Leiva V, Barros M, Liu S (2012) Robust statistical modeling using the Birnbaum-Saunders-\(t\) distribution applied to insurance. Appl Stoch Models Bus Ind 28:16–34

    Article  MathSciNet  MATH  Google Scholar 

  • Poon WY, Poon YS (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc B 61:51–61

    Article  MathSciNet  MATH  Google Scholar 

  • Rao CR, Toutenburg H, Shalabh, Heumann C (2008) Linear models and generalizations. Springer, Berlin

  • Ramanathan R (1993) Statistical methods in econometrics. Wiley, New York

    Google Scholar 

  • Shi L, Chen G (2008) Local influence in multilevel models. Can J Stat 36:259–275

    Article  MathSciNet  MATH  Google Scholar 

  • Shi L, Huang M (2011) Stepwise local influence analysis. Comput Stat Data Anal 55:973–982

    Article  MathSciNet  MATH  Google Scholar 

  • Trenkler G (1987) Mean square error matrix comparisons among restricted least squares estimators. Sankyhā A 49:96–104

    MathSciNet  MATH  Google Scholar 

  • Wooldridge JM (2013) Introductory econometrics: a modern approach. South-Western Cengage Learning, Mason, OH

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangzhe Liu.

Appendices

Appendix 1: differentials for the Hessian matrix

We use matrix calculus as studied in Magnus and Neudecker (1999) to establish our results in both disturbance cases. In the spherical disturbance case, we present the differentials for the Hessian matrix in Appendix 1 and for the \({\varvec{\varDelta }}\) matrices in Appendix 2. In the non-spherical disturbance case, we obtain the differentials and matrices in a similar manner, so that they are and omitted here.

First, we take the differential of \(\ell \) given in (5) with respect to \({\varvec{\beta }}\) and \(\sigma ^2\) and obtain

$$\begin{aligned} \text {d}_{{\varvec{\beta }}} \ell= & {} \frac{1}{\sigma ^2}({\varvec{y}}-{\varvec{X}} {\varvec{\beta }})^\top {\varvec{X}} \text {d} {\varvec{\beta }} - \varvec{\uplambda }^\top {\varvec{R}} \text {d} {\varvec{\beta }}, \end{aligned}$$
(19)
$$\begin{aligned} \text {d}_{\sigma ^2} \ell= & {} - \frac{n}{2 \sigma ^2} \text {d} \sigma ^2 + {({\varvec{y}}-{\varvec{X}} {\varvec{\beta }})^\top ({\varvec{y}}-{\varvec{X}} {\varvec{\beta }}) \over 2 \sigma ^4}\text {d} \sigma ^2. \end{aligned}$$
(20)

Then, we take the differentials of the elements of the score vector given in (19) and (20) with respect to \({\varvec{\beta }}\) and \(\sigma ^2\) as

$$\begin{aligned} \text {d}^2_{{\varvec{\beta }}} \ell= & {} - \frac{1}{\sigma ^2} \text {d} {\varvec{\beta }} {\varvec{X}}^\top {\varvec{X}} \text {d}{\varvec{\beta }}, \end{aligned}$$
(21)
$$\begin{aligned} \text {d}^2_{\sigma ^2} \ell= & {} \frac{n}{2 \sigma ^4} \text {d}\sigma ^2 \text {d} \sigma ^2 - \frac{1}{\sigma ^6}\text {d} \sigma ^2 ({\varvec{y}}-{\varvec{X}} {\varvec{\beta }})^\top ({\varvec{y}}-{\varvec{X}} {\varvec{\beta }})\text {d} \sigma ^2, \end{aligned}$$
(22)
$$\begin{aligned} \text {d}^2_{{\varvec{\beta }} \sigma ^2} \ell= & {} - \frac{1}{\sigma ^4} \text {d}{\varvec{\beta }}^\top {\varvec{X}}^\top ({\varvec{y}}-{\varvec{X}} {\varvec{\beta }})\text {d} \sigma ^2. \end{aligned}$$
(23)

We establish the Hessian matrix \({\varvec{H}}({\varvec{\theta }})\) from the differentials given in (21), (22) and (23).

Appendix 2: differentials for the perturbation schemes

We present the differentials for the perturbation schemes in the spherical disturbance case defined in Sect. 3.2 considering the log-likelihood functions \(\ell _{{{\varvec{w}}}_1}\), \(\ell _{{{\varvec{w}}}_2}\) and \(\ell _{{{\varvec{w}}}_3}\) established in (16), (17) and (18), respectively. From the differentials, we get the \({\varvec{\varDelta }}\) matrices.

Model perturbation Taking the differential of \(\ell _{{{\varvec{w}}}_1}\) with respect to \({\varvec{\beta }}\) and \(\sigma ^2\), we obtain

$$\begin{aligned} \text {d}_\beta \ell _{{{\varvec{w}}}_1}= & {} \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top {\varvec{X}}^\top {\varvec{W}} ({\varvec{y}}-{\varvec{X}}{\varvec{\beta }}) - \text {d}{\varvec{\beta }}^\top {\varvec{R}}^\top {\uplambda },\\ \text {d}_{\sigma ^2} \ell _{{{\varvec{w}}}_1}= & {} - \frac{n}{2 \sigma ^2}\text {d}\sigma ^2 + {({\varvec{y}}-{\varvec{X}}{\varvec{\beta }})^\top {\varvec{W}}({\varvec{y}}-{\varvec{X}} {\varvec{\beta }}) \over 2 \sigma ^4}\text {d} \sigma ^2. \end{aligned}$$

Taking the differential of \(\text {d} \ell _{{{\varvec{w}}}_1}\) with respect to \({\varvec{w}}\), we obtain

$$\begin{aligned} \text {d}^2_{\beta w}\ell _{{{\varvec{w}}}_1}= & {} \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top {\varvec{X}}^\top \text {d} {\varvec{W}}({\varvec{y}}-{\varvec{X}} {\varvec{\beta }}) \nonumber \\= & {} \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top \left( \left( {\varvec{y}}-{\varvec{X}}{\varvec{\beta }}\right) ^\top \otimes {\varvec{X}}^\top \right) {\varvec{S}} \text {d}{\varvec{w}}, \\ \text {d}^2_{\sigma ^2 w}\ell _{{{\varvec{w}}}_1}= & {} \frac{1}{2 \sigma ^4}\text {d} \sigma ^2({\varvec{y}}-{\varvec{X}}{\varvec{\beta }})^\top \text {d}{\varvec{W}}(y-{\varvec{X}}{\varvec{\beta }}) \nonumber \\= & {} \frac{1}{2 \sigma ^4}\text {d} \sigma ^2\left( \left( {\varvec{y}}-{\varvec{X}}{\varvec{\beta }}\right) ^\top \otimes \left( {\varvec{y}}-{\varvec{X}}{\varvec{\beta }}\right) ^\top \right) {\varvec{S}} d{\varvec{w}}. \end{aligned}$$

Response perturbation Taking the differential of \(\ell _{{{\varvec{w}}}_2}\) with respect to \({\varvec{\beta }}\) and \(\sigma ^2\), we obtain

$$\begin{aligned} \text {d}_\beta \ell _{{{\varvec{w}}}_2}= & {} \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top {\varvec{X}}^\top (y+w-{\varvec{X}}{\varvec{\beta }}) - \text {d}{\varvec{\beta }}^\top {\varvec{R}}^\top \varvec{\uplambda }, \\ \text {d}_{\sigma ^2} \ell _{{{\varvec{w}}}_2}= & {} - \frac{n}{2 \sigma ^2}\text {d} \sigma ^2 + {({\varvec{y}}+ {\varvec{w}}-{\varvec{X}}{\varvec{\beta }})^\top ({\varvec{y}}+{\varvec{w}}-{\varvec{X}}{\varvec{\beta }}) \over 2 \sigma ^4}\text {d} \sigma ^2. \end{aligned}$$

Taking the differential of \(\text {d} \ell _{{{\varvec{w}}}_2}\) with respect to \({\varvec{w}}\) we obtain

$$\begin{aligned} \text {d}^2_{\beta w} \ell _{{{\varvec{w}}}_2}= & {} \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top {\varvec{X}}^\top \text {d}{\varvec{w}}, \\\text {d}^2_{\sigma ^2 w} \ell _{{{\varvec{w}}}_2}= & {} \frac{1}{\sigma ^4}\text {d} \sigma ^2({\varvec{y}} + {\varvec{w}} -{\varvec{X}}{\varvec{\beta }})^\top \text {d}{\varvec{w}}. \end{aligned}$$

Covariable perturbation Taking the differential of \(\text {d} \ell _{{{\varvec{w}}}_3}\) with respect to \({\varvec{\beta }}\) and \(\sigma ^2\), we obtain

$$\begin{aligned} \text {d}_\beta \ell _{{{\varvec{w}}}_3}= & {} \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top ({\varvec{X}} + {\varvec{W}} {\varvec{A}})^\top ({\varvec{y}}-({\varvec{X}}+ {\varvec{W}} {\varvec{A}}){\varvec{\beta }}) - \text {d}{\varvec{\beta }}^\top {\varvec{R}}^\top \varvec{\uplambda }, \\ \text {d}_{\sigma ^2} \ell _{{{\varvec{w}}}_3}= & {} - \frac{n}{2 \sigma ^2}\text {d} \sigma ^2 + \frac{1}{2 \sigma ^4}\text {d} \sigma ^2({\varvec{y}} -({\varvec{X}}+ {\varvec{W}} {\varvec{A}}){\varvec{\beta }})^\top ({\varvec{y}}-({\varvec{X}}+{\varvec{W}} {\varvec{A}}){\varvec{\beta }}). \end{aligned}$$

Taking the differential of \(\text {d} \ell _{{{\varvec{w}}}_3}\) with respect to \({\varvec{w}}\), we obtain

$$\begin{aligned} \text {d}^2_{\beta w} \ell _{{{\varvec{w}}}_3}= & {} \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top {\varvec{A}} \text {d}{\varvec{W}}^\top ({\varvec{y}}- ({\varvec{X}} +{\varvec{W}} {\varvec{A}}) {\varvec{\beta }}) - \frac{1}{\sigma ^2} \text {d}{\varvec{\beta }}^\top ({\varvec{X}} + {\varvec{W}} {\varvec{A}})^\top \text {d}{\varvec{W}} {\varvec{A}}{\varvec{\beta }}, \\ \text {d}^2_{\sigma ^2 w} \ell _{{{\varvec{w}}}_3}= & {} -\frac{1}{\sigma ^4}\text {d} \sigma ^2 ({\varvec{y}}-{\varvec{X}} {\varvec{\beta }} - {\varvec{W}} {\varvec{A}} {\varvec{\beta }})^\top \text {d} {\varvec{W}} {\varvec{A}} {\varvec{\beta }}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Leiva, V., Ma, T. et al. Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions. Stat Methods Appl 25, 227–249 (2016). https://doi.org/10.1007/s10260-015-0329-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-015-0329-4

Keywords

Mathematics Subject Classification

Navigation