Skip to main content
Log in

Microstructure and Mechanical Properties of Copper, Nickel and Ternary Alloys Cu-Ni-Zr Obtained by Mechanical Alloying and Hot Pressing

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Elemental powders of Cu and Ni, binary alloys (Cu-Ni and Cu-Zr) and ternary alloy (Cu-Ni-Zr) obtained by mechanical alloying and uniaxial compaction hot microstructure and mechanical properties were investigated. The alloys studied were: pure Cu, pure Ni, binary alloys (Cu-Ni; Cu-Zr) and ternary alloys (Cu-Ni-Zr) under the same mechanical milling and hot pressing conditions. The samples were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM); the mechanical properties were studied by compression tests and hardness in Vickers scale (HV0.5) on polished surfaces at room temperature. According to XRD results, hot pressing process crystallite size increase and microstrain decreases in the compact samples due to the release of crystalline defects. The compacted samples have porosity of approximately 20%. The milling powder samples have a higher hardness than the unmilled samples, this because during milling crystal defects are incorporated together with the microstructural refinement. Ternary alloy is the one with the highest hardness of all systems studied, reaching 689 HV0.5. In compression tests determined a strain 5 %, Zr-containing samples become more fragile presenting the lowest values of compressive strength. In contrast, samples of Ni and Cu-Ni binary alloy are more resistant to compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.H. Buchanan, R.A. Liu, C.T. et al., Intermetallics., 10, 1157 (2002).

    Google Scholar 

  2. C. Suryanarayana, Int. Mater. Rev., 40, 41 (1995).

    CAS  Google Scholar 

  3. H. Gleiter, Prog. Mater. Sci., 33, 223 (1989).

    CAS  Google Scholar 

  4. R.A. Masumura, P.M. Hazzledine, C.S. Pande, Acta Mater., 46, 4527 (1998).

    CAS  Google Scholar 

  5. Z.N. Farhat, Y. Ding, D.O. Northwood, A.T. Alpas, Mater. Sci. Eng. A, 206, 302 (1996).

    Google Scholar 

  6. D.H. Jeong, F. Gonzalez, G. Palumbo, K.T. Aust, U. Erb, Scripta Mater., 44, 493 (2001).

    CAS  Google Scholar 

  7. W. Clement, R.H. Willens, P. Duwez, Nature, 187, 869 (1960).

    Google Scholar 

  8. A. Kawashima, K. Ohmura, Y. Yokoyama, A. Inoue, Corros. Sci., 53, 2778 (2011).

    CAS  Google Scholar 

  9. W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. A, 44, 45 (2004).

    Google Scholar 

  10. C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Acta Mater., 55, 4067 (2007).

    CAS  Google Scholar 

  11. A. Inoue, X.M Wang, W. Zhang, Rev. Adv. Mater. Sci., 18, 1 (2008).

    CAS  Google Scholar 

  12. C. Martínez, S. Ordoñez, D. Guzmán, D. Serafini, I. Iturriza, O. Bustos, J. Alloy Compd. 580, 241(2013).

    Google Scholar 

  13. C. Martínez, S. Ordoñez, D. Serafini, D. Guzmán, P.A. Rojas, J. Alloy Compd., 590, 469 (2014).

    Google Scholar 

  14. D.L. Zhang, Prog. Mater. Sci., 49, 537 (2004).

    CAS  Google Scholar 

  15. C. Suryanarayana, Prog. Mater. Sci., 46, 1 (2001).

    CAS  Google Scholar 

  16. K. Shengzhong, F. Liu, D. Yutian, X. Guangji, D. Zongfu, L. Peiqing, Intermetallics, 12, 1115 (2004).

    Google Scholar 

  17. J. Eckert, Mater. Sci. Eng. A., 226, 364 (1997).

    Google Scholar 

  18. H.J. Kim, J.K. Lee, S.Y. Shin, et al, Intermetallics, 12, 1109 (2004).

    CAS  Google Scholar 

  19. P.A. Rojas, A. Peñaloza, C.H. Wörner, R. Fernández, A. Zúñiga, J. Alloy Compd., 425, 334 (2006).

    CAS  Google Scholar 

  20. P. A. Rojas, M. P. Álvarez, A. Peñaloza, A. Zúñiga, S. Ordoñez, Rev. Metal. Madrid., 45, 165 (2009).

    CAS  Google Scholar 

  21. C. Aguilar, P.A. Rojas, S. Ordoñez, D. Guzmán, Rev. Materia., 14, 777 (2009).

    CAS  Google Scholar 

  22. C. Aguilar, S. Ordoñez, D. Guzmán, P.A. Rojas, J. Alloy Compd., 504, 102 (2010).

    CAS  Google Scholar 

  23. C. Aguilar, P.A. Rojas, S. Ordoñez, D. Guzmán, Acta Crystallogr. A, 66, 154 (2010).

    Google Scholar 

  24. C. Aguilar, D. Guzmán, P.A. Rojas, S. Ordoñez, R. Ríos, Mater. Chem. Phys., 128, 539 (2011).

    CAS  Google Scholar 

  25. C. Martínez, P. Rojas, C. Aguilar, D. Guzmán, E. Zelaya, Rev. Materia, 20, 621 (2015).

    Google Scholar 

  26. P. Rojas, C. Martínez, F. Viancos, C. Aguilar, D. Guzmán, E. Zelaya, Rev. Materia, 20, 705 (2015).

    CAS  Google Scholar 

  27. G. K. Williamson, W.H. Hall, Acta. Metall., 1, 22 (1953).

    CAS  Google Scholar 

  28. T. Ungár, A. Borbély, Appl. Phys. Lett., 69, 3173 (1996).

    Google Scholar 

  29. G. Carturan, Mater. Lett., 7, 47 (1988).

    CAS  Google Scholar 

  30. A. Lahiri, R. Das, R. G. Reddy, J. Power Sources, 195, 1688 (2010).

    CAS  Google Scholar 

  31. A. Nazari, M. Zakeri, Ceram. Inter., 39, 1587 (2013).

    CAS  Google Scholar 

  32. S. Brandstetter, P.M. Derlet, S. Van Petegem, H. Van Swygenhoven, Acta Mater., 56, 166 (2008).

    Google Scholar 

  33. J. Eckert, J. Das, K.B. Kim, F. Baier, M.B. Tang, W.H. Wang, Z.F. Zhang, Intermetallics, 14, 876 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, C., Briones, F., Rojas, P. et al. Microstructure and Mechanical Properties of Copper, Nickel and Ternary Alloys Cu-Ni-Zr Obtained by Mechanical Alloying and Hot Pressing. MRS Advances 2, 2831–2836 (2017). https://doi.org/10.1557/adv.2017.519

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.519

Navigation