Skip to main content
Log in

Phytostabilization Ability of Baccharis linearis and Its Relation to Properties of a Tailings-Derived Technosol

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Spontaneous colonization of mine tailing dams by plants is a potential tool for phytostabilization of such reservoirs. However, the physical and chemical properties of each mine tailings deposit determine the success of natural plant establishment. The plant Baccharis linearis is the main native nanophanerophyte species (evergreen sclerophyllous shrub) that naturally colonizes abandoned copper tailings dams in arid to semiarid north-central Chile. This study compare growth of B. linearis against the physical and chemical properties of a Technosol derived from copper mine tailings. Five sites inside the deposit were selected based on B. linearis vegetation density (VD), at two soil sampling depths under the canopy of adult individuals. Physical and chemical properties of tailings samples and nutrient concentrations in tailings and plants were each determined. Some morphological features of the plants (roots and aerial parts) were also quantified. There were significant differences in soil available water capacity (AW) and relative density (Rd) at different VD. Sites with low AW and high Rd had lower nutrient concentrations and higher Zn content in tailings, decreased infection by arbuscular mycorrhizal fungi, and increased fine root abundance and root hair length in individual plants. In contrast, higher AW, which was positively correlated with fine particles and organic matter content, had a positive effect on vegetation coverage, increased N and P contents in tailings, and increased N contents in leaf tissues, even when available N and P levels in tailings were low. Multiple constraints, such as low AW, N, P, and B contents and high Zn concentrations in the tailings restricted vegetation coverage, but no phenotypic differences were observed between individuals. Thus, in order to promote dense coverage by B. linearis, water retention in these tailings must be improved by increasing colloidal particles (organic and/or inorganic) contents, which have a positive effect on colonization by this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alday, J. G., Marrs, R. H., & Martínez-Ruiz, C. (2011). Vegetation succession on reclaimed coal wastes in Spain: the influence of soil and environmental factors. Applied Vegetation Science. doi:10.1111/j.1654-109X.2010.01104.x.

    Google Scholar 

  • Bashour, I., & Sayegh, A. (2007). Methods of analysis for soils of arid and semi-arid regions. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Bingham, I., & Robinson, D. (2003). Root growth and development. In B. Thomas, D. Murphy, & B. Murray (Eds.), Encyclopædia of applied plant Sciences (pp. 1115–1123). London: Academic Press.

    Chapter  Google Scholar 

  • Blight, G. (2010). Geotechnical engineering for mine waste storage facilities. London: CRC-Taylor & Francis Group.

    Book  Google Scholar 

  • Boateng, E., Dowuona, G. N. N., Nude, P. M., Foli, G., Gyekye, P., & Jafaru, M. (2012). Geochemical assessment of the impact of mine tailings reclamation on the quality of soils at AngloGold concession, Obuasi, Ghana. Research Journal of Environmental and Earth Sciences, 4(4), 466–474.

    CAS  Google Scholar 

  • Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist. doi:10.1111/j.1469-8137.2007.01996.x.

    Google Scholar 

  • Cano-Reséndiz, O., De La Rosa, G., Cruz-Jiménez, G., Gardea-Torresdey, J. L., & Robinson, B. H. (2011). Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2011.02.059.

    Google Scholar 

  • Chen, B. D., Zhu, Y. G., Duan, J., Xiaoa, X. Y., & Smith, S. E. (2007). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Enviromental Pollution. doi:10.1016/j.envpol.2006.04.027.

    Google Scholar 

  • Chern, E., Tsai, A., & Gunseitan, O. (2007). Deposition of glomalin related soil protein and sequestered toxic metals into watersheds. Environmental Science & Technology. doi:10.1021/es0628598.

    Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresource Technology. doi:10.1016/j.biortech.2005.01.038.

    Google Scholar 

  • Christie, P., Li, X., & Chen, B. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil. doi:10.1023/B:PLSO.0000035542.79345.1b.

    Google Scholar 

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Science of the Total Environment. doi:10.1016/j.scitotenv.2005.12.008.

    Google Scholar 

  • Cornejo, P., Meier, S., Borie, G., Rillig, M. C., & Borie, F. (2008). Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment. doi:10.1016/j.scitotenv.2008.07.045.

    Google Scholar 

  • Cuevas, J., Silva, S., León-Lobos, P., & Ginocchio, R. (2013). Nurse effect and herbivory exclusion facilitate plant colonization in abandoned mine tailings storage facilities in north-central Chile. Revista Chilena de Historia Natural. doi:10.4067/S0716-078X2013000100006.

    Google Scholar 

  • Das, B. M. (2016). Principles of foundation engineering. Boston: Cengage Learning.

    Google Scholar 

  • Dimitrova, R., & Yanful, E. (2012). Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy. Engineering Geology. doi:10.1016/j.enggeo.2011.10.013.

    Google Scholar 

  • Dold, B., & Fontboté, L. (2001). Element cycling and secondary mineralogy in porphyry copper tailings as function of climate, primary mineralogy, and mineral processing. Journal of Geochemical Exploration. doi:10.1016/S0375-6742(01)00174-1.

    Google Scholar 

  • Entry, J. A., Rygiewicz, P. T., Watrud, L. S., & Donnelly, P. K. (2002). Influence of adverse soil conditions on the formation and fuction of arbuscular mycorrhizas. Advances in Environmental Research. doi:10.1016/S1093-0191(01)00109-5.

    Google Scholar 

  • Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. Beirut: ICARDA.

    Google Scholar 

  • Favas, P. J. C., Pratas, J., Gomes, M. E. P., & Cala, V. (2011). Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: environmental implications. Journal of Geochemical Exploration. doi:10.1016/j.gexplo.2011.04.009.

    Google Scholar 

  • Fitter, A. (2002). Characteristics and functions of root systems. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots: The hidden half (pp. 15–32). New York: Marcel Dekker Inc..

    Chapter  Google Scholar 

  • Ghorbani, M., Khara, J., & Abbaspour, N. (2012). Effects of season and soil conditions on the mycorrhizal status and colonization of seven grass species. Iranian Journal of Plant Physiology, 2(2), 387–393.

    Google Scholar 

  • Giasson, P., Karam, A., & Jaouich, A. (2008). Arbuscular mycorrhizae and alleviation of soil stresses on plant growth. In Z. Siddiqui, M. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable Agriculture and forestry (pp. 99–134). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ginocchio, R., Bustamante, E., Silva, Y., De La Fuente, L. M., Cuevas, J. G., Jiménez, I., León-Lobos, P., Gazitúa, C., & González, B. (2008). The potential of Baccharis linearis (R. et P.) Pers. for phytostabilization of abandoned copper mine tailing storage facilities under semiarid Mediterranean climate type conditions. Proceedings of the V SETAC World congress. Canberra: Society of Environmental Toxicology and Chemistry.

    Google Scholar 

  • Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist. doi:10.1111/j.1469-8137.1980.tb04556.x.

    Google Scholar 

  • Goldberg, S., & Su, C. (2007). New advances in boron soil chemistry. In F. Xu, H. Goldbach, P. H. Brown, R. W. Bell, T. Fujiwara, C. D. Hunt, S. Goldberg, & L. Shi (Eds.), Advances in Plant and Animal Boron Nutrition (pp. 313–330). Dordrecht: Springer.

    Chapter  Google Scholar 

  • González-Chávez, M., Carrillo-González, R., & Gutiérrez-Castorena, M. (2009). Natural attenuation in a slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials. doi:10.1016/j.jhazmat.2008.04.110.

    Google Scholar 

  • González-Chávez, M., Carrillo-González, R., Wright, S., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution. doi:10.1016/j.envpol.2004.01.004.

    Google Scholar 

  • Gryndler, M., Vejsadová, H., & Vančura, V. (1992). The effect of magnesium ions on the vesicular-arbuscular mycorrhizal infection of maize roots. New Phytologist. doi:10.1111/j.1469-8137.1992.tb00073.x.

    Google Scholar 

  • Gucwa-Przepióra, E., Malkowski, E., Sas-Nowosielska, A., Kucharski, R., Krzyzak, J., Kita, A., & Römkens, P. F. M. A. (2007). Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths. Environmental Pollution. doi:10.1016/j.envpol.2007.01.024.

    Google Scholar 

  • Hazelton, P., & Murphy, B. (2007). Interpreting soil test results. What do all the numbers mean? Victoria: CSIRO Publishing.

    Google Scholar 

  • Hettiarachchi, G., & Gupta, U. (2008). Boron, molybdenum, and selenium. In M. Carter & E. Gregorich (Eds.), Soil sampling and methods of analysis (pp. 131–144). Boca Raton: Taylor & Francis Group-CRC Press.

    Google Scholar 

  • Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil. doi:10.1007/s11104-008-9885-9.

    Google Scholar 

  • Hossner, L. R., & Shahandeh, H. (2006). Rehabilitation of minerals processing residue (tailings). In R. Lal (Ed.), Encyclopedia of Soil Science (pp. 1450–1455). Boca Raton: CRC Press-Taylor & Francis.

    Google Scholar 

  • Huang, L., Baumgartl, T., & Mulligan, D. (2012). Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Annals of Botany. doi:10.1093/aob/mcs115.

    Google Scholar 

  • Iglesia, R., Castro, D., Ginocchio, R., van der Lelie, D., & González, B. (2006). Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. Journal of Applied Microbiology. doi:10.1111/j.1365-2672.2005.02793.x.

    Google Scholar 

  • IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Jones, J. B. (2003). Agronomic handbook: management of crops, soils, and their fertility. Boca Raton: CRC Press LLC.

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: Taylor and Francis-CRC Press.

    Google Scholar 

  • Knappett, J. A., & Craig, R. F. (2012). Craig’s soil mechanics. New York: Spon Press.

    Google Scholar 

  • Kopsell, D. A., Kopsell, D. E., & Hamlin, R. L. (2015). Molybdenum. In A. Barker & D. Pilbeam (Eds.), Handbook of plant Nutrition (pp. 487–510). Boca Raton: Taylor and Francis-CRC Press.

    Google Scholar 

  • Koske, R., & Gemma, J. (1989). A modified procedure for staining roots to detect VA mycorrhiza. Mycological Research. doi:10.1016/S0953-7562(89)80195-9.

    Google Scholar 

  • Li, M. (2006). Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Science of the Total Environment. doi: 10.1016/j.scitotenv.2005.05.003.

  • Liao, M., Palta, J., & Fillery, I. (2006). Root characteristics of vigorous wheat improve early nitrogen uptake. Australian Journal of Agricultural Research. doi:10.1071/AR05439.

    Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/Technology. doi:10.1007/s11157-007-9125-4.

    Google Scholar 

  • Montecinos, S., Gutierrez, J. R., & Lopéz-Cortés, F. (2016). Climatic characteristics of the semi-arid Coquimbo region in Chile. Journal of Arid Environments. doi:10.1016/j.jaridenv.2015.09.018.

    Google Scholar 

  • Novero, M., Genre, A., Szczyglowski, K., & Bonfante, P. (2009). Root hair colonization by mycorrhizal fungi. In A. M. C. Emons & T. Ketelaar (Eds.), Root hairs (pp. 315–338). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Paliewicz, C. C., Sirbescu, M., Sulatycky, T., & van Hees, E. H. (2015). Environmentally hazardous boron in gold mine tailings, Timmins, Ontario, Canada. Mine Water and the Environment. doi:10.1007/s10230-014-0284-6.

    Google Scholar 

  • Paradelo, R., Moldes, A., & Barral, M. (2008). Characterization of slate processing fines according to parameters of relevance for mine spoil reclamation. Applied Clay Science. doi:10.1016/j.clay.2007.10.009.

    Google Scholar 

  • Parraga-Aguado, I., González-Alcaraz, M. N., Alvarez-Rogel, J., Jimenez-Carceles, F. J., & Conesa, H. M. (2013). The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings. Environmental Pollution. doi:10.1016/j.envpol.2013.01.023.

    Google Scholar 

  • Peth, S., Horn, R., & Fazekas, O. (2006). Heavy soil loading its consequence for soil structure, strength, deformation of arable soils. Journal of Plant Nutrition and Soil Science. doi:10.1002/jpln.200620112.

    Google Scholar 

  • Pizarro, R., Valdés, R., García-Chevesich, P., Vallejos, C., Sangüesa, C., Morales, C., Balocchi, F., Abarza, F., & Fuentes, R. (2012). Latitudinal analysis of rainfall intensity and mean annual precipitation in Chile. Chilean Journal of Agricultural Research. doi:10.4067/S0718-58392012000200014.

    Google Scholar 

  • Qiu, Y., & Sego, D. (2001). Laboratory properties of mine tailings. Canadian Geotechnical Journal. doi:10.1139/t00-082.

    Google Scholar 

  • Recio-Vazquez, L., Garcia-Guinea, J., Carral, P., Alvarez, A. M., & Garrido, F. (2011). Arsenic mining waste in the catchment area of the Madrid Detrital aquifer (Spain). Water, Air & Soil Pollution, doi. doi:10.1007/s11270-010-0425-x.

    Google Scholar 

  • Sadzawka, A., Carrasco, M., Demanet, R., Flores, H., Grez, R., Mora, M., & Neaman, A. (2007). Methods of vegetal tissue analyses. Institute of Agricultural Research of Chile. http://www2.inia.cl/medios/biblioteca/serieactas/NR34664.pdf. Accessed 15 July 2016.

  • Sadzawka, A., Carrasco, M., Grez, R., Mora, M., Flores, H., Neaman, A. (2006). Methods of analysis recommended for soils of Chile. Institute of Agricultural Research of Chile. http://www.inia.cl/medios/biblioteca/serieactas/NR33998.pdf. Accessed 5 July 2016.

  • Sandoval, M., Dörner, J., Seguel, O., Cuevas, J., & Rivera, D. (2012). Methods of soil physical analyses. [in Spanish]. Chillán: Universidad de Concepción.

    Google Scholar 

  • Santibáñez, C., Verdugo, C., & Ginocchio, R. (2008). Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Science of the Total Environment. doi:10.1007/s11270-010-0425-x.

    Google Scholar 

  • Santos, V. L., Muchovej, R. M., Borges, A. C., Neves, J. C. L., & Kasuya, M. C. M. (2001). Vesicular-arbuscular/ecto-mycorrhiza succession in seedlings of Eucalyptus spp. Brazilian Journal of Microbiology, 32, 81–86. doi:10.1590/S1517-83822001000200002.

    Article  Google Scholar 

  • Senesi, N., & Loffredo, E. (2005). Interactions with metals (organic matter). In D. Hillel, J. L. Hatfield, D. S. Powlson, M. J. Singer, C. Rosenzweig, & D. L. Sparks (Eds.), Encyclopedia of Soils in the Environment (pp. 101–112). New York: Academic Press.

    Chapter  Google Scholar 

  • SERNAGEOMIN. (2015). Catastro de depósitos de relaves en Chile. Santiago: Servicio Nacional de Geología y Minería, Ministerio de Minería Available (2016 Jul 21): http://www.sernageomin.cl/pdf/mineria/relaves/Catastro-Depositos-de-Relaves-en-Chile.xls.

    Google Scholar 

  • Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution. doi:10.1016/S0269-7491(02)00110-0.

    Google Scholar 

  • Simpson, M., Aravena, E., & Deverell, J. (2014). The future of mining in Chile. Sydney: CSIRO.

    Google Scholar 

  • Spitz, K., & Trudinger, J. (2008). Mining and the environment. From ore to metal. Boca Raton: CRC Press- Taylor & Francis Group, LLC.

    Book  Google Scholar 

  • Stjernman Forsberg, L., & Ledin, S. (2003). Effects of iron precipitation and organic amendments on porosity and penetrability in sulphide mine tailings. Water, Air, & Soil Pollution, doi. doi:10.1023/A:1022036317408.

    Google Scholar 

  • Tsay, Y., Ho, C., & Chen, H. (2011). Integration of nitrogen and potassium signalling. Annual Review of Plant Biology. doi:10.1146/annurev-arplant-042110-103837.

    Google Scholar 

  • Turnlund, J., & Friberg, L. (2007). Molybdenum. In G. Nordberg, A. Fowler, M. Nordberg, & L. Friberg (Eds.), Handbook on the toxicology of metals (pp. 731–741). Amsterdam: Academic Press.

    Chapter  Google Scholar 

  • Veresoglou, S., & Halley, J. (2012). A model that explains diversity patterns of arbuscular mycorrhizas. Ecological Modelling. doi:10.1016/j.ecolmodel.2012.01.026.

    Google Scholar 

  • Vodnik, D., Grčman, H., Maček, I., van Elteren, J. T., & Kovačevič, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment. doi:10.1016/j.scitotenv.2007.11.016.

    Google Scholar 

  • Vogel, H., & Kasper, B. (2002). Mine soils on abandoned gold mine tailings in Francistown. Report by the Bundesanstalt für Geowissenschaften und Rohstoffe and Department of Geological Survey (Environmental Geology Division). Lobatse, Botswana.

  • Wang, X., Liu, Y., Zeng, G., Chai, L., Xiao, X., Song, X., & Min, Z. (2008). Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere. doi:10.1016/j.chemosphere.2008.05.001.

    Google Scholar 

  • Wills, B. A., & Finch, J. A. (2016). Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Oxford: Butterworth-Heinemann (Elsevier).

    Google Scholar 

  • Ye, Z. H., Shu, W. S., Zhang, Z. Q., Lan, C. Y., & Wong, M. (2002). Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere. doi:10.1016/S0045-6535(02)00054-1.

    Google Scholar 

  • Young, I. W. R., Naguit, C., Halwas, S. J., Renault, S., & Markham, J. H. (2013). Natural revegetation of a boreal gold mine tailings pond. Restoration Ecology. doi:10.1111/j.1526-100X.2012.00913.x.

    Google Scholar 

  • Ziadi, N., Whalen, J. K., Messiga, A. J., & Morel, C. (2013). Assessment and modeling of soil available phosphorus in sustainable cropping systems. Advances in Agronomy. doi:10.1016/B978-0-12-417187-9.00002-4.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Soil and Engineering Department at the Faculty of Agronomic Sciences of the University of Chile and by the Bioengineering Laboratory at the Faculty of Engineering and Science of Adolfo Ibáñez University. Additional funds from CONICYT (Grant FB 0002-2014) were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Casanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menares, F., Carrasco, M.A., González, B. et al. Phytostabilization Ability of Baccharis linearis and Its Relation to Properties of a Tailings-Derived Technosol. Water Air Soil Pollut 228, 182 (2017). https://doi.org/10.1007/s11270-017-3348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3348-y

Keywords

Navigation