Skip to main content
Log in

Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the convergence of an inexact version of the classical Krasnosel’skii–Mann iteration for computing fixed points of nonexpansive maps. Our main result establishes a new metric bound for the fixed-point residuals, from which we derive their rate of convergence as well as the convergence of the iterates towards a fixed point. The results are applied to three variants of the basic iteration: infeasible iterations with approximate projections, the Ishikawa iteration, and diagonal Krasnosels’kii–Mann schemes. The results are also extended to continuous time in order to study the asymptotics of nonautonomous evolution equations governed by nonexpansive operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation, North Chelmsford (1964)

    MATH  Google Scholar 

  2. Baillon, J.B., Bruck, R.E.: Optimal rates of asymptotic regularity for averaged nonexpansive mappings. In: Tan, K.K. (ed.) Proceedings of the Second International Conference on Fixed Point Theory and Applications, pp. 27–66. World Scientific Press, London (1992)

  3. Baillon, J.B., Bruck, R.E.: The rate of aymptotic regularity is \(O(1/\sqrt{n})\). Lect. Notes Pure Appl. Math. 178, 51–81 (1996)

    MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  5. Bravo, M., Cominetti, R.: Sharp convergence rates for averaged nonexpansive maps. Isr. J. Math. (2018) (to appear)

  6. Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  7. Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Browder, F.E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Am. Math. Soc. 74, 660–665 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20, 197–228 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Combettes, P.L.: Quasi–Fejérian analysis of some optimization algorithms. Stud. Comput. Math. 8, 115–152 (2001)

    Article  MATH  Google Scholar 

  12. Cominetti, R., Soto, J., Vaisman, J.: On the rate of convergence of Krasnosel’skiǐ–Mann iterations and their connection with sums of Bernoullis. Isr. J. Math. 199, 757–772 (2014)

    Article  MATH  Google Scholar 

  13. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  15. Goebel, K., Kirk, W.A.: Classical theory of nonexpansive mappings. In: Kirk, M., Sims, B. (eds.) Handbook of Metric Fixed Point Theory, pp. 49–91. Kluwer Academic Publishers, Dordrecht (2001)

  16. Göhde, D.: Zum prinzip der kontraktiven abbildung. Math. Nachr. 30, 251–258 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, T.H., Xu, H.K.: Robustness of Mann’s algorithm for nonexpansive mappings. J. Math. Anal. Appl. 327, 1105–1115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004–1006 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krasnosel’skii, M.A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 63, 123–127 (1955)

    MathSciNet  Google Scholar 

  21. Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators. Math. Prog. Ser. A 159, 1–32 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, L.S.: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114–125 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Franc. Inform. Rech. Opér. 4, 154–159 (1970)

    MATH  Google Scholar 

  25. Mercier, B.: Lectures on Topics in Finite Element Solution of Elliptic Problems, Lectures on Mathematics and Physics, vol. 63. Tata Institute of Fundamental Research, Bombay (1979)

    Book  MATH  Google Scholar 

  26. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 283–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  28. Polyak, B.T.: Gradient methods for the minimisation of functionals. USSR Comput. Math. Math. Phys. 3, 864–878 (1963)

    Article  MATH  Google Scholar 

  29. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  31. Zhao, J., Yang, Q.: Several solution methods for the split feasibility problem. Inverse Probl. 21, 1791–1799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cominetti.

Additional information

This work was partially supported by Núcleo Milenio Información y Coordinación en Redes ICM/FIC RC130003. Mario Bravo was partially funded by FONDECYT 11151003. Roberto Cominetti and Matías Pavez-Signé gratefully acknowledge the support provided by FONDECYT 1130564 and FONDECYT 1171501.

Bound for approximate projections

Bound for approximate projections

The goal of this Appendix is to establish the next technical Lemma used in the proof of Theorem 5.

Lemma 3

Let \((x_n,z_n)\) be given by (IKM\(_z\)), and denote \(\delta _n=d(x_n,C)+ \gamma _n\) and \(\xi _n=\Vert e_n\Vert +\gamma _n/\alpha _n\) with \(\delta _0=\xi _0=0\). If \(\sum _{k\ge 1}\alpha _k=\infty \) and \(\sum _{k\ge 1}\alpha _k\xi _k<\infty \), then \(\delta _n\rightarrow 0\) and \(\sum _{k\ge 1}\alpha _{k}\delta _{k-1}<\infty \).

Proof

Starting from the identity

$$\begin{aligned} x_{n}=(1-\alpha _{n})z_{n-1}+\alpha _{n}Tz_{n-1}+(1-\alpha _{n})(x_{n-1} -z_{n-1})+\alpha _{n}e_{n} \end{aligned}$$

and since \((1-\alpha _{n})z_{n-1}+\alpha _{n}Tz_{n-1}\in C\), we get

$$\begin{aligned} \text{ dist }(x_{n},C)\le \Vert (1-\alpha _{n})(x_{n-1}-z_{n-1})+\alpha _{n}e_{n}\Vert \le (1-\alpha _{n})\delta _{n-1}+\alpha _{n}\Vert e_{n}\Vert . \end{aligned}$$

It follows that \(\delta _{n}\le (1-\alpha _{n})\delta _{n-1}+\alpha _{n}\xi _n\) and letting \(\rho _n=\prod _{j=1}^n(1\!-\!\alpha _j)\) with \(\rho _0=1\) we get

$$\begin{aligned} \frac{\delta _{n}}{\rho _n}\le \frac{\delta _{n-1}}{\rho _{n-1}}+\frac{\alpha _{n}}{\rho _n}\xi _n. \end{aligned}$$

Iterating this inequality we get \(\frac{\delta _{n}}{\rho _n}\le \sum _{i=0}^n\frac{\alpha _{i}}{\rho _i}\xi _i\) which yields \(\delta _{n}\le \sum _{i=0}^n\alpha _i\xi _i\,\frac{\rho _n}{\rho _i}.\)

This inequality can be written as \(\delta _{n}\le \int _{{\mathbb N}}f_n\,d\mu \) with \(\mu \) the finite measure on \({\mathbb N}\) defined by \(\mu (\{i\})=\alpha _i\xi _i\), and \(f_n:{\mathbb N}\rightarrow {\mathbb R}\) given by \(f_n(i)=\frac{\rho _n}{\rho _i}\) for \(i\le n\) and \(f_n(i)=0\) for \(i>n\). Since \(f_n(i)\rightarrow 0\) as \(n\rightarrow \infty \) and \(f_n(i)\le 1\), Lebesgue’s dominated convergence theorem implies that \(\int _{{\mathbb N}}f_nd\mu \) tends to zero so that \(\delta _n\rightarrow 0\).

It remains to show that the sum \(S=\sum _{k\ge 1}\alpha _{k}\delta _{k-1}\) is finite. Using the previous bound for \(\delta _{k-1}\) and exchanging the order of summation we get

$$\begin{aligned} S\le \sum _{k=1}^\infty \alpha _{k}\sum _{i=0}^{k-1}\alpha _i\xi _i\, \frac{\rho _{k-1}}{\rho _i} =\sum _{i=0}^\infty \alpha _i\xi _i\sum _{k=i+1}^\infty \alpha _{k}\prod _{j=i+1}^{k-1}(1\!-\!\alpha _j). \end{aligned}$$

The term \(q_{i+1}^k=\alpha _{k}\prod _{j=i+1}^{k-1}(1\!-\!\alpha _j)\) in this last sum can be interpreted as a probability. Namely, suppose that at every integer j we toss a coin that falls head with probability \(\alpha _j\). Then, \(q_{i+1}^k\) is the probability that starting at position \(i+1\) the first head occurs exactly at position k. Hence \(\sum _{k=i+1}^\infty q_{i+1}^k=1\) and therefore \(S\le \sum _{i=0}^\infty \alpha _i\xi _i<\infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, M., Cominetti, R. & Pavez-Signé, M. Rates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces. Math. Program. 175, 241–262 (2019). https://doi.org/10.1007/s10107-018-1240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1240-1

Keywords

Mathematics Subject Classification

Navigation