Skip to main content
Log in

Robust Solutions to the Life-Cycle Consumption Problem

  • Published:
Computational Economics Aims and scope Submit manuscript

A Correction to this article was published on 04 March 2020

This article has been updated

Abstract

This paper demonstrates how the well-known discrete life-cycle consumption problem (LCP) can be solved using the Robust Counterpart (RC) formulation technique, as defined in Ben-Tal and Nemirovski (Math Oper Res 23(4):769–805, 1998). To do this, we propose a methodology that involves applying a change of variables over the original consumption before deriving the RC. These transformations allow deriving a closed solution to the inner problem, and thus to solve the LCP without facing the curse of dimensionality and without needing to specify the prior distribution for the investment opportunity set. We generalize the methodology and illustrate how it can be used to solve other type of problems. The results show that our methodology enables solving long-term instances of the LCP (30 years). We also show it provides an alternative consumption pattern as to the one provided by a benchmark that uses a dynamic programming approach. Rather than finding a consumption that maximizes the expected lifetime utility, our solution delivers higher utilities for worst-case scenarios of future returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

Notes

  1. See Rockafellar and Uryasev (2000) for more details about CVaR.

  2. See, for example, Bodie et al. (2004), Cocco et al. (2005), Koijen et al. (2009), Detemple and Rindisbacher (2009), and Bick et al. (2013).

  3. See Homem-de Mello et al. (2011) and Powell (2011) for details about the SDDP and ADP techniques, respectively.

  4. See details in Cai (2019) and references therein for further explanation.

  5. See, for example, Branger and Hansis (2012) and Larsen and Munk (2012).

  6. Philpott and De Matos (2012) explain how to include risk aversion measures into the SDDP.

  7. See, for example, Fabozzi et al. (2007) and Fliege and Werner (2014).

  8. The proof is in the “Appendix”.

  9. Model in Eq. (10) also allows the factor model as explained in Dantzig and Infanger (1993).

  10. The proof is in the “Appendix”.

  11. We use Artelys Knitro 12 and AMPL to solve the \(LCP^{*}\). Documentation of both software is provided in Byrd et al. (2006) and Fourer et al. (1993).

  12. In this context, the CVaR at a p% level estimates the mean lifetime utility \(U_N\) that goes below the p%-percentile.

  13. See Cai (2019), Aissi et al. (2009), and references therein for more details about the min–max regret.

References

  • Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min–max and min–max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research, 197(2), 427–438.

    Google Scholar 

  • Barberis, N. (2000). Investing for the long run when returns are predictable. Journal of Finance, 55(1), 225–264.

    Google Scholar 

  • Ben-Tal, A., Boyd, S., & Nemirovski, A. (2006). Extending scope of robust optimization: Comprehensive robust counterparts of uncertain problems. Mathematical Programming, 107(1–2), 63–89.

    Google Scholar 

  • Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable robust solutions of uncertain linear programs. Mathematical Programming, 99(2), 351–376.

    Google Scholar 

  • Ben-Tal, A., Margalit, T., & Nemirovski, A. (2000). Robust modeling of multi-stage portfolio problems. In H. Frenk, K. Roos, T. Terlaky, & S. Zhang (Eds.), High performance optimization (pp. 303–328). Boston: Springer.

    Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805.

    Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1–13.

    Google Scholar 

  • Bertsimas, D., & Pachamanova, D. (2008). Robust multiperiod portfolio management in the presence of transaction costs. Computers & Operations Research, 35(1), 3–17.

    Google Scholar 

  • Bertsimas, D., Pachamanova, D., & Sim, M. (2004). Robust linear optimization under general norms. Operations Research Letters, 32(6), 510–516.

    Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Google Scholar 

  • Bick, B., Kraft, H., & Munk, C. (2013). Solving constrained consumption-investment problems by simulation of artificial market strategies. Management Science, 59(2), 485–503.

    Google Scholar 

  • Bodie, Z., Detemple, J. B., Otruba, S., & Walter, S. (2004). Optimal consumption-portfolio choices and retirement planning. Journal of Economic Dynamics and Control, 28(6), 1115–1148.

    Google Scholar 

  • Bodie, Z., Merton, R. C., & Samuelson, W. F. (1992). Labor supply flexibility and portfolio choice in a life cycle model. Journal of Economic Dynamics and Control, 16(3–4), 427–449.

    Google Scholar 

  • Branger, N., & Hansis, A. (2012). Asset allocation: How much does model choice matter? Journal of Banking & Finance, 36(7), 1865–1882.

    Google Scholar 

  • Byrd, R. H., Nocedal, J., & Waltz, R. A. (2006). Knitro: An integrated package for nonlinear optimization. In G. Di Pillo & M. Roma (Eds.), Large-scale nonlinear optimization (pp. 35–59). Boston: Springer.

    Google Scholar 

  • Cai, Y. (2019). Computational methods in environmental and resource economics. Annual Review of Resource Economics, 11, 59–82.

    Google Scholar 

  • Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfolio selection: Robust portfolio construction. Journal of Asset Management, 7(2), 109–127.

    Google Scholar 

  • Chai, J., Horneff, W., Maurer, R., & Mitchell, O. S. (2011). Optimal portfolio choice over the life cycle with flexible work, endogenous retirement, and lifetime payouts. Review of Finance, 15(4), 875–907.

    Google Scholar 

  • Cocco, J. F., Gomes, F. J., & Maenhout, P. J. (2005). Consumption and portfolio choice over the life cycle. Review of Financial Studies, 18(2), 491–533.

    Google Scholar 

  • Dantzig, G. B., & Infanger, G. (1993). Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research, 45(1), 59–76.

    Google Scholar 

  • De Nardi, M., French, E., & Jones, J. B. (2010). Why do the elderly save? The role of medical expenses. Journal of Political Economy, 118(1), 39–75.

    Google Scholar 

  • Detemple, J., & Rindisbacher, M. (2009). Dynamic asset allocation: Portfolio decomposition formula and applications. Review of Financial Studies, 23(1), 25–100.

    Google Scholar 

  • Detemple, J. B., & Giannikos, C. I. (1996). Asset and commodity prices with multi-attribute durable goods. Journal of Economic Dynamics and Control, 20(8), 1451–1504.

    Google Scholar 

  • Duffie, D., & Epstein, L. G. (1992). Stochastic differential utility. Econometrica, 30(2), 353–394.

    Google Scholar 

  • Dumas, B., & Luciano, E. (1991). An exact solution to a dynamic portfolio choice problem under transactions costs. Journal of Finance, 46(2), 577–595.

    Google Scholar 

  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. New York: Wiley.

    Google Scholar 

  • Fischetti, M., & Monaci, M. (2009). Light robustness. In R. K. Ahuja, R. H. Möhring, & C. D. Zaroliagis (Eds.), Robust and online large-scale optimization (pp. 61–84). Berlin: Springer.

    Google Scholar 

  • Fliege, J., & Werner, R. (2014). Robust multiobjective optimization & applications in portfolio optimization. European Journal of Operational Research, 234(2), 422–433.

    Google Scholar 

  • Fourer, R., Gay, D. M., & Kernighan, B. W. (1993). AMPL. A modeling language for mathematical programming. Management Science, 36, 519–641.

    Google Scholar 

  • Friedman, M. (1957). A theory of the consumption function. Cambridge: National Bureau of Economic Research, Inc.

    Google Scholar 

  • Garlappi, L., Uppal, R., & Wang, T. (2006). Portfolio selection with parameter and model uncertainty: A multi-prior approach. Review of Financial Studies, 20(1), 41–81.

    Google Scholar 

  • Gregory, C., Darby-Dowman, K., & Mitra, G. (2011). Robust optimization and portfolio selection: The cost of robustness. European Journal of Operational Research, 212(2), 417–428.

    Google Scholar 

  • Guiso, L., Jappelli, T., & Terlizzese, D. (1996). Income risk, borrowing constraints, and portfolio choice. American Economic Review, 3(1), 158–172.

    Google Scholar 

  • Hindy, A., & Huang, Cf. (1993). Optimal consumption and portfolio rules with durability and local substitution. Econometrica, 61, 85–121.

    Google Scholar 

  • Homem-de Mello, T., De Matos, V. L., & Finardi, E. C. (2011). Sampling strategies and stopping criteria for stochastic dual dynamic programming: A case study in long-term hydrothermal scheduling. Energy Systems, 2(1), 1–31.

    Google Scholar 

  • Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42(3), 621–656.

    Google Scholar 

  • Karatzas, I., Lehoczky, J. P., Shreve, S. E., & Xu, G. L. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM Journal on Control and Optimization, 29(3), 702–730.

    Google Scholar 

  • Koijen, R. S., Nijman, T. E., & Werker, B. J. (2009). When can life cycle investors benefit from time-varying bond risk premia? Review of Financial Studies, 23(2), 741–780.

    Google Scholar 

  • Koijen, R. S., Van Nieuwerburgh, S., & Yogo, M. (2016). Health and mortality delta: Assessing the welfare cost of household insurance choice. Journal of Finance, 71(2), 957–1010.

    Google Scholar 

  • Larsen, L. S., & Munk, C. (2012). The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts. Journal of Economic Dynamics and Control, 36(2), 266–293.

    Google Scholar 

  • Liu, H. (2010). Robust consumption and portfolio choice for time varying investment opportunities. Annals of Finance, 6(4), 435–454.

    Google Scholar 

  • Liu, J., & Pan, J. (2003). Dynamic derivative strategies. Journal of Financial Economics, 69(3), 401–430.

    Google Scholar 

  • Modigliani, F., & Brumberg, R. (1954). Utility analysis and the consumption function: An interpretation of cross-section data. In K. K. Kurihara (Ed.), Post Keynesian Economics. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Philpott, A. B., & De Matos, V. L. (2012). Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. European Journal of Operational Research, 218(2), 470–483.

    Google Scholar 

  • Polkovnichenko, V. (2006). Life-cycle portfolio choice with additive habit formation preferences and uninsurable labor income risk. Review of Financial Studies, 20(1), 83–124.

    Google Scholar 

  • Powell, W. B. (2011). Approximate dynamic programming: Solving the curses of dimensionality. Hoboken, NJ: Wiley.

    Google Scholar 

  • Ramsey, F. P. (1928). A mathematical theory of saving. The Economic Journal, 38(152), 543–559.

    Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42.

    Google Scholar 

  • Samuelson, P. A. (1969). Lifetime portfolio selection by dynamic stochastic programming. Review of Economics and Statistics, 51, 239–246.

    Google Scholar 

  • Viceira, L. M. (2001). Optimal portfolio choice for long-horizon investors with nontradable labor income. Journal of Finance, 56(2), 433–470.

    Google Scholar 

  • Yogo, M. (2016). Portfolio choice in retirement: Health risk and the demand for annuities, housing, and risky assets. Journal of Monetary Economics, 80, 17–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Reus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lorenzo Reus declares support by FONDECYT #11170012.

Appendices

Appendix: Proof of Lemma 1

  1. 1.

    With the logarithm utility function, \(LCP^{*}\) is the following:

    $$\begin{aligned}&\max \limits _{\begin{array}{c} \tilde{c}_t\ge 0 \end{array}} \log (c_0)+\sum _{t=1}^{N-1}\beta _t \log (\tilde{c}_t)+\beta _{N}\log \left( w_0-\sum _{k=1}^{N-1}\tilde{c}_k\right) \\&\quad + \min \limits _{r \in \mathcal {S}} \sum _{t=1}^{N-1}\beta _t\log (R_t)+\beta _{N}\log (R_N)\\&\text {s.t.}\sum _{k=0}^{N-1}\tilde{c}_k \le w_0 \end{aligned}$$

    The inner problem does not depend on the decision variable, so it can be omitted. Consider now the unconstrained problem. The optimal conditions are:

    $$\begin{aligned}&\beta _t\tilde{c}_t^{-1}-\beta _{N}\left( w_0-\sum _{k=0}^{N-1} \tilde{c}_k\right) ^{-1}=0 \quad \forall t:1\ldots N-1\nonumber \\&c_0^{-1}-\beta _{N}\left( w_0-\sum _{k=0}^{N-1}\tilde{c}_k\right) ^{-1}=0 \end{aligned}$$
    (A.1)

    Then

    $$\begin{aligned} \tilde{c}_t=\beta _tc_0 \end{aligned}$$
    (A.2)

    Plugging (A.2) into (A.1) we have

    $$\begin{aligned}&\beta _{N} c_0 =\left( w_0-\sum _{k=0}^{N-1}\tilde{c}_k\right) =w_0-c_0 -\sum _{t=1}^{N-1}\beta _t\\&\implies c_0=\frac{w_0}{1+\sum _{t=1}^{N}\beta _t} \end{aligned}$$

    This solution is feasible. Plugging (A.2)

    $$\begin{aligned} \sum _{t=0}^{N-1}\tilde{c}_t&= \tilde{c}_0 +w_0\sum _{t=0}^{N-1}\frac{\beta _t}{1+\sum _{k=1}^{N}\beta _k}\\&=\frac{w_0}{1+\sum _{t=1}^{N}\beta _t}+w_0\sum _{t=0}^{N-1} \frac{\beta _t}{1+\sum _{k=1}^{N}\beta _k}=w_0 \end{aligned}$$
  2. 2.

    When \(\theta =0\), the \(LCP^{*}\) equals

    $$\begin{aligned}&\max \limits _{\begin{array}{c} \tilde{c}_t\ge 0 \end{array}} \tilde{c}_0^{\gamma }+\sum _{t=1}^{N-1}\beta _t\tilde{c}_t^{\gamma } \hat{a}_t+\beta _{N}\left( w_0-\sum _{k=0}^{N-1}\tilde{c}_k\right) ^{\gamma }\hat{a}_{N}\\&\text {s.t.}\quad \sum _{t=0}^{N-1}\tilde{c}_t \le w_0 \end{aligned}$$

    The optimal conditions for the unconstrained are:

    $$\begin{aligned}&\beta _t\hat{a}_t\tilde{c}_t^{\gamma -1}-\beta _{N} \hat{a}_N\left( w_0-\sum _{k=0}^{N-1}\tilde{c}_k\right) ^{\gamma -1}=0 \quad \forall t:1\ldots N-1\\&c_0^{\gamma -1}-\beta _{N}\hat{a}_N\left( _0-\sum _{k=0}^{N-1} \tilde{c}_k\right) ^{\gamma -1}=0 \end{aligned}$$

    Hence we obtain that

    $$\begin{aligned} \tilde{c}_t=(\beta _t\hat{a}_t)^{\frac{1}{1-\gamma }}c_0 \end{aligned}$$
    (A.3)

    Plugging (A.3) into the first optimal conditions we have:

    $$\begin{aligned}&(\beta _{N}\hat{a}_N)^{\frac{1}{1-\gamma }} c_0=w_0-\sum _{t=0}^{N-1}\tilde{c}_t\\&\quad =w_0-c_0-\sum _{t=1}^{N}(\beta _t\hat{a}_t)^{\frac{1}{1-\gamma }}c_0\\&\quad \implies c_0=\frac{w_0}{1+\sum _{t=1}^{N}(\beta _{t} \hat{a}_t)^{\frac{1}{1-\gamma }}} \end{aligned}$$

    This solution is feasible. Plugging (A.3)

    $$\begin{aligned}&\sum _{t=0}^{N-1}\tilde{c}_t = \tilde{c}_0 +w_0\sum _{t=0}^{N-1}\frac{(\beta _t\hat{a}_t)^{\frac{1}{1-\gamma }}}{1+\sum _{k=1}^{N}(\beta _{k}\hat{a}_k)^{\frac{1}{1-\gamma }}}\\&\quad =\frac{w_0}{1+\sum _{t=1}^{N}(\beta _{t}\hat{a}_t)^{\frac{1}{1-\gamma }}}+\sum _{t=0}^{N-1}\frac{w_0(\beta _t\hat{a}_t)^{\frac{1}{1-\gamma }}}{1+\sum _{k=1}^{N}(\beta _{k}\hat{a}_k)^{\frac{1}{1-\gamma }}}=w_0 \end{aligned}$$
  3. 3.

    When \(N=1\), then the \(LCP^{*}\) equals

    $$\begin{aligned} \max \limits _{\begin{array}{c} 0 \le \tilde{c}_t\le 0 \end{array}} \tilde{c}_0^{\gamma } +\beta _{1}(w_0-\tilde{c}_0)^{\gamma }(\hat{a}-\theta \sqrt{V}) \end{aligned}$$

    The optimal condition is

    $$\begin{aligned} c_0^{\gamma -1}-\beta _{1}(w_0-\tilde{c}_0)^{\gamma -1}(\hat{a}-\theta \sqrt{V})=0 \end{aligned}$$

    which leads to

    $$\begin{aligned} c_0= \frac{w_0}{1+(\beta _1(\hat{a}-\theta \sqrt{V}))^{\frac{1}{1-\gamma }}} \end{aligned}$$

Appendix: Proof of Eq. (11)

By Eq. (10) and the definition of \(R_t=\prod _{k=1}^t r_k\),

$$\begin{aligned}&\hat{a}_t =E(R_t^{\gamma })=E\left( \left[ \prod _{k=1}^t e^{\mu +L_{k}z}\right] ^\gamma \right) \\&\quad = e^{\gamma \mu t} E\left( e^{\gamma \sum _{k=1}^t \sum _{j=1}^{N}L_{k,j}z_j}\right) =e^{\gamma \mu t} E\left( e^{\gamma \sum _{j=1}^N z_j \sum _{k=1}^{t} L_{k,j}}\right) \end{aligned}$$

Since z is a standard normal i.i.d. vector and that \(LL^T=C\), this is equal to

$$\begin{aligned}&= e^{\gamma \mu t} \prod _{j=1}^N E\left( e^{\gamma z_j \sum _{k=1}^{t} L_{k,j}}\right) = e^{\gamma \mu t} \prod _{j=1}^N e^{\frac{\gamma ^2}{2}\left[ \sum _{k=1}^{t} L_{k,j}\right] ^2}\\&=e^{\gamma \mu t} e^{\frac{\gamma ^2}{2}\sum _{j=1}^N\left[ \sum _{k=1}^{t} L_{k,j}\right] ^2}=e^{\gamma \mu t}e^{\frac{\gamma ^2}{2}\sum _{k=1}^t\sum _{l=1}^{t} C_{k,l}}\\&=e^{\gamma \mu t+\frac{\gamma ^2}{2}A(t,t)} \end{aligned}$$

with

$$\begin{aligned}&A(t,t) = \sum _{k=1}^t\sum _{l=1}^{t} C_{k,l}\\&\quad =\sigma ^2\sum _{k=1}^t\sum _{l=1}^{t}\rho ^{\left| k-l\right| } =\frac{t-t\rho ^2-2\rho +2\rho ^{t+1}}{(1-p)^2}\\&Cov(R_s^{\gamma }, R_t^{\gamma })\\&\quad = e^{\gamma \mu (t+s)} Cov\left( e^{\gamma \sum _{k=1}^t L_{k}z}, e^{\gamma \sum _{l=1}^s L_{l}z}\right) = e^{\gamma \mu (t+s)} \\&\qquad \left[ E(e^{\gamma \left( \sum _{k=1}^t L_{k}z+\sum _{l=1}^s L_{l}z\right) }-E\left( e^{\gamma \sum _{k=1}^t L_{k}z}\right) E\left( e^{\gamma \sum _{l=1}^s L_{l}z}\right) \right] \end{aligned}$$

Denoting \(A(t,s):=\sum _{k=1}^t\sum _{l=s}^t C_{t,s}\), we have shown that \(E(e^{\gamma \sum _{k=1}^t L_{k}z})=e^{\frac{\gamma ^2}{2}B(t,t)}\). z is a standard normal i.i.d. vector and that \(LL^T=C\), thus

$$\begin{aligned}&E\left( e^{\gamma \left( \sum _{k=1}^t L_{k}z+\sum _{l=1}^s L_{l}z\right) }\right) \\&\quad =E(e^{\gamma \sum _{j=1}^N z_j \left( \sum _{k=1}^t L_{k,j}+\sum _{l=1}^s L_{l,j}\right) }\\&\quad =\prod _{j=1}^N E\left( e^{\gamma z_j \left( \sum _{k=1}^t L_{k,j}+\sum _{l=1}^s L_{l,j}\right) }\right) \\&\qquad \prod _{j=1}^N e^{\frac{\gamma ^2}{2}\left( \sum _{k=1}^t L_{k,j}+\sum _{l=1}^s L_{l,j}\right) ^2}=e^{\frac{\gamma ^2}{2}\sum _{j=1}^N\left( \sum _{k=1}^t L_{k,j}+\sum _{l=1}^s L_{l,j}\right) ^2}\\&\quad =e^{\frac{\gamma ^2}{2}[A(t,t)+A(s,s)+2A(s,t)]} \end{aligned}$$

Thus \(Cov(R_s^{\gamma }, R_t^{\gamma })\) equals

$$\begin{aligned}&e^{\gamma \mu (t+s)} \left[ e^{\frac{\gamma ^2}{2}[A(t,t)+A(s,s)+2A(s,t)]} - e^{\frac{\gamma ^2}{2}[A(t,t)+A(s,s)]}\right] \\&\quad = e^{\gamma \mu (t+s)}e^{\frac{\gamma ^2}{2}[A(t,t)+A(s,s)]}[ e^{\gamma ^2 A(s,t)}-1 ]\\&\quad =\hat{a}_s\hat{a}_t[ e^{\gamma ^2 A(s,t)}-1] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reus, L., Fabozzi, F.J. Robust Solutions to the Life-Cycle Consumption Problem. Comput Econ 57, 481–499 (2021). https://doi.org/10.1007/s10614-019-09964-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-019-09964-1

Keywords

Navigation