Skip to main content
Log in

Simultaneous assessment of the effects of an herbicide on the triad: rhizobacterial community, an herbicide degrading soil bacterium and their plant host

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This work addresses the relevant effects that one single compound, used as model herbicide, provokes on the activity/survival of a suitable herbicide degrading model bacterium and on a plant that hosts this bacterium and its bacterial rhizospheric community.

Methods

The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on Acacia caven hosting the 2,4-D degrading bacterium Cupriavidus pinatubonensis JMP134, and its rhizospheric microbiota, were simultaneously addressed in plant soil microcosms, and followed by culture dependent and independent procedures, herbicide removal tests, bioprotection assays and use of encapsulated bacterial cells.

Results

The herbicide provokes deleterious effects on the plant, which are significantly diminished by the presence of the plant associated C. pinatubonensis, especially with encapsulated cells. This improvement correlated with increased 2,4-D degradation rates. The herbicide significantly changes the structure of the A. caven bacterial rhizospheric community; and it also diminishes the preference of C. pinatubonensis for the A. caven rhizosphere compared with the surrounding bulk soil.

Conclusions

The addition of an herbicide to soil triggers a complex, although more or less predictable, suite of effects on rhizobacterial communities, herbicide degrading bacteria and their plant hosts that should be taken into account in fundamental studies and design of bio(phyto)remediation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiol Ecol 52:279–286

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant—microbe interactions in the rhizosphere. In: Karlovsky P (ed) Secondary Metabolites in Soil Ecology. Soil Biology 14. Springer-Verlag, Berlin Heidelberg, pp 241–252

  • Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206

    Article  PubMed  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil 256:67–83

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1997) Survival and activity of lac-lux marked Pseudomonas aeruginosa UG2Lr cells in encapsulated carrageenan over 4 years at 48 °C. J Microbiol Meth 30:167–170

    Article  CAS  Google Scholar 

  • Clement P, Pieper DH, González B (2001) Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134 (pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Microbiology 147:2141–2148

    PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • DiGiovanni GD, Neilson JW, Pepper IL, Sinclair NA (1996) Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous recipients. Appl Environ Microbiol 62:2521–2526

    PubMed  CAS  Google Scholar 

  • Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Kahmann R (2009) Battle for survival: plants and their allies and enemies. Curr Opin Plant Biol 12:387–389

    Article  PubMed  Google Scholar 

  • Duke SO (1990) Overview of herbicide mechanisms of action. Environ Health Perspect 87:263–271

    Article  PubMed  CAS  Google Scholar 

  • Fukumori F, Hausinger RP (1993) Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenases. J Biol Chem 268:24311–24317

    PubMed  CAS  Google Scholar 

  • Gazitúa C, Slater AW, Melo F, González B (2010) Novel α-ketoglutarate dioxygenase tfdA related gene are found in soil DNA after exposure to phenoxyalkanoic herbicides. Environ Microbiol 12:2411–2425

    Article  PubMed  Google Scholar 

  • Germaine KJ, Liu X, García-Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Grossmann K (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508

    Article  PubMed  CAS  Google Scholar 

  • Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120

    PubMed  CAS  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1(pRO101) in 2,4-D contaminated soil. Plant and Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jofré E, Mori G, Castro S, Fabra A, Rivarola V, Balegno H (1996) 2,4-dichlorophenoxyacetic acid affects the attachment of Azospirillum brasilense Cd to maize roots. Toxicology 107:9–15

    Article  PubMed  Google Scholar 

  • Kalra YP (1998) Handbook of reference methods for plant analysis. Soil and Plant Analysis Council, CRC Lewis Publ, Boca Raton

    Google Scholar 

  • Kloepper JW, Lifshitz R, Schroth MN (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci pp 60–64

  • Kragelund L, Nybroe O (1996) Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 (pJP4) during colonization of barley roots. FEMS Microbiol Ecol 20:41–51

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. Wiley, New York

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  PubMed  CAS  Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. Hort Sci 32:188–192

    Google Scholar 

  • Ledger T, Pieper DH, González B (2006) Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation. Appl Environ Microbiol 72:2783–2792

    Article  PubMed  CAS  Google Scholar 

  • Ledger T, Zúñiga A, Kraiser T, Dasencich P, Donoso R, Pérez-Pantoja D, González B (2012) Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 101:713–723

    Article  PubMed  CAS  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Louie TM, Webster CM, Xun L (2002) Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  PubMed  CAS  Google Scholar 

  • Lykidis A, Pérez-Pantoja D, Ledger T, Mavrommatis K, Anderson I, Ivanova N, Hooper S, Lapidus A, González B, Kyrpides N (2010) The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLOS One 5:e9729

    Article  PubMed  Google Scholar 

  • Macur RE, Wheeler JT, Burr MD, Inskeep WP (2007) Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Microbiol Res 162:37–45

    Article  PubMed  CAS  Google Scholar 

  • Manzano M, Morán AC, Tesser B, González B (2007) Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Antonie van Leeuwenhoek 91:115–126

    Article  PubMed  CAS  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, van der Taghavi S, Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Engineer Rev 23:175–207

    Article  CAS  Google Scholar 

  • Mathysse AG, Stretton S, Dandie C, McClure NC, Goodman AE (1996) Construction of GFP vectors for use in Gram-negative bacteria other than Escherichia coli. FEMS Microbiol Lett 145:87–94

    Article  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Phys 132:146–153

    Article  CAS  Google Scholar 

  • Newby DT, Gentry TJ, Pepper IL (2000) Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl Environ Microbiol 66:3399–3407

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya K, Nishioka M, Kino-oka M, Taya M (2004) Differences in responses of plant hairy roots to chemical toxicity compared between primary and ramified roots. Environ Sci 11:283–291

    PubMed  CAS  Google Scholar 

  • Ovalle C, Del Pozo A, Casado M, De Costa B, Miguel M (2006) Consequences of landscape heterogeneity on grassland diversity and productivity in the espinal agroforestry system of Central Chile. Landscape Ecol 21:585–594

    Article  Google Scholar 

  • Pavissich JP, Silva M, González B (2010) Sulfate reduction, molecular diversity, and copper amendment effects in bacterial communities enriched from sediments exposed to copper–mining residues. Environ Toxicol Chem 29:256–264

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Pantoja D, Ledger T, Pieper DH, González B (2003) Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134 (pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–1542

    Article  PubMed  Google Scholar 

  • Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    Article  PubMed  Google Scholar 

  • Pérez-Pantoja D, Donoso R, Junca H, González B, Pieper DH (2010) Phylogenomics of aerobic bacterial degradation of aromatics. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology, Vol 2, Chap 39. Springer-Verlag Berlin, Germany, pp 1356–1397

  • Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B (2012) Genomic analysis of aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14:1091–1117

    Article  PubMed  Google Scholar 

  • Shaw LJ, Burns RG (2004) Enhanced mineralisation of [U-(14C)] 2,4-dichlorophenoxyacetic acid in the soil from the rhizosphere of Trifolium pratense. Appl Environ Microbiol 70:4766–4774

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2005) Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environ Microbiol 7:191–202

    Article  PubMed  CAS  Google Scholar 

  • Smit E, Wolters AC, Lee H, van Trevors JT, Elsas JD (1996) Interaction between a genetically marked Pseudomonas fluorescens strain and bacteriophage øR2f in soil: effects of nutrients, alginate encapsulation, and the wheat rhizosphere. Microb Ecol 31:125–140

    Article  Google Scholar 

  • Sørensen SR, Simonsen A, Aamand J (2009) Constitutive mineralization of low concentrations of the herbicide linuron by a Variovorax sp. strain. FEMS Microbiol Lett 292:291–296

    Article  PubMed  Google Scholar 

  • Sterling TM, Hall JC (1997) Mechanism of action of natural auxins and the auxinic herbicides. In: Roe RM, Burton JD, Kuhr RJ (eds) Herbicide activity: toxicology, biochemistry and molecular biology. IOS, Amsterdam, pp 111–141

    Google Scholar 

  • Suwa Y, Wright AD, Fukumori F, Nummy KA, Hausinger RP, Holben WE, Forney LJ (1996) Characterization of a chromosomally encoded 2,4- dichlorophenoxyacetate/ α-ketoglutarate dioxygenase from Burkholderia sp. strain RASC. Appl Environ Microbiol 62:2464–2469

    PubMed  CAS  Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    Article  PubMed  CAS  Google Scholar 

  • Top EM, Van Daele P, De Saeyer N, Forney LJ (1998) Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie van Leeuwenhoek 73:87–94

    Article  PubMed  CAS  Google Scholar 

  • Trefault N, Guzmán L, Pérez H, Godoy M, González B (2009) Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134. Int Microbiol 12:97–106

    PubMed  CAS  Google Scholar 

  • Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–21

    Chapter  Google Scholar 

  • Ussery DW, Kiil K, Lagesen K, Sicheritz-Pontén T, Bohlin J, Wassenaar TM (2009) The genus Burkholderia: analysis of 56 genomic sequences. Genome Dyn 6:140–157

    Article  PubMed  CAS  Google Scholar 

  • Van de Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  Google Scholar 

  • Weir SC, Dupuis SP, Providenti MA, Lee H, Trevors JT (1995) Nutrient enhanced survival of and phenanthrene mineralization by alginate encapsulated and free Pseudomonas sp. UG14Lr cells in creosote contaminated soil slurries. Appl Microbiol Biotechnol 43:946–951

    Article  PubMed  CAS  Google Scholar 

  • Young CC, Rekha PD, Lai WA, Arun AB (2006) Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol Bioeng 95:76–86

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zheng JW, Liang B, Wang CH, Cai S, Ni YY, He J, Li SP (2011) Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro. J Agric Food Chem 59:4614–4621

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Hall C (2001) Understanding auxinic herbicide resistance in wild mustard: physiology, biochemical, and molecular genetic approaches. Weed Sci 49:276–281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Fondo de Desarrollo de la Ciencia y la Tecnología (FONDECYT) grants 1070343 and 3090051, and the Millennium Nuclei in “Microbial Ecology and Environmental Microbiology and Biotechnology” grant P/04-007-F, and “Plant Functional Genomics” grant P/06-009-F. This study is also part of the research program Fondo de Desarrollo de Áreas Prioritarias (FONDAP) 1501–0001 funded by Comisión Nacional de Investigación Científica y Tecnologíca (CONICYT) to the Center for Advanced Studies in Ecology & Biodiversity Program 7. T.K. is CONICYT- PhD fellow. M.S. and T.L. are postdoctoral fellows of Programa de Atracción e Inserción de Capital Humano Avanzado, PAI/AC 79090016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. González.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraiser, T., Stuardo, M., Manzano, M. et al. Simultaneous assessment of the effects of an herbicide on the triad: rhizobacterial community, an herbicide degrading soil bacterium and their plant host. Plant Soil 366, 377–388 (2013). https://doi.org/10.1007/s11104-012-1444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1444-8

Keywords

Navigation