Skip to main content
Log in

Atomistic simulations of plasma catalytic processes

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devins J C, Burton M. Formation of hydrazine in electric discharge decomposition of ammonia. Journal of the American Chemical Society, 1954, 76(10): 2618–2626

    Article  CAS  Google Scholar 

  2. Henis J M. Nitrogen oxide decomposition process. US Patent 3983021, 1976

    Google Scholar 

  3. Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446

    Article  CAS  Google Scholar 

  4. Russ H, Neiger M, Lang J E. Simulation of micro discharges for the optimization of energy requirements for removal of NOx from exhaust gases. IEEE Transactions on Plasma Science, 1999, 27(1): 38–39

    Article  CAS  Google Scholar 

  5. Chang J S, Kostov K G, Urashima K, Yamamoto T, Okayasu Y, Kato T, Iwaizumi T, Yoshimura K. Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Transactions on Industry Applications, 2002, 36(5): 1251–1259

    Article  Google Scholar 

  6. Whitehead J C. Plasma-catalysis the known knowns, the known unknowns and the unknown unknowns. Journal of Physics. D, Applied Physics, 2016, 49(24): 243001

    Article  Google Scholar 

  7. Neyts E C, Bogaerts A. Understanding plasma catalysis through modelling and simulation—a review. Journal of Physics. D, Applied Physics, 2014, 47(22): 224010

    Article  Google Scholar 

  8. Voter A F. Parallel replica method for dynamics of infrequent events. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(22): R13985–R13988

    Article  CAS  Google Scholar 

  9. Perez D, Uberuaga B P, Voter A F. The parallel replica dynamics method—coming of age. Computational Material Science, 2015, 100, part B, 90–103

    Article  CAS  Google Scholar 

  10. Voter A F. A method for accelerating the molecular dynamics simulation of infrequent events. Journal of Chemical Physics, 1997, 106(11): 4665–4677

    Article  CAS  Google Scholar 

  11. Voter A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Physical Review Letters, 1997, 78(20): 3908–3911

    Article  CAS  Google Scholar 

  12. Sörensen M R, Voter A F. Temperature-accelerated dynamics simulation of infrequent events. Journal of Chemical Physics, 2000, 112: 9599

    Article  Google Scholar 

  13. Montalenti F, Voter A F. Exploiting past visits or minimum barrier knowledge to gain further boost in the temperature-accelerated dynamics method. Journal of Chemical Physics, 2002, 116(12): 4819

    Article  CAS  Google Scholar 

  14. Bal K M, Neyts E C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 2015, 11(10): 4545–4554

    Article  CAS  Google Scholar 

  15. Bal K M, Neyts E C. Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations. Chemical Science (Cambridge), 2016, 7(8): 5280–5286

    Article  CAS  Google Scholar 

  16. Fu C D, Oliveira L F L, Pfaendtner J. Assessing generic collective variables for determining reaction rates in metadynamics simulations. Journal of Chemical Theory and Computation, 2017, 13(3): 968–973

    Article  CAS  Google Scholar 

  17. Neyts E C, Brault P. Molecular dynamics simulations for plasmasurface interactions. Plasma Processes and Polymers, 2016, 14(1-2): 1600145

    Article  Google Scholar 

  18. Shibuta Y, Maruyama S. Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chemical Physics Letters, 2003, 382(3-4): 381–386

    Article  CAS  Google Scholar 

  19. Ding F, Bolton K, Rosén A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. Journal of Physical Chemistry B, 2004, 108(45): 17369–17377

    Article  CAS  Google Scholar 

  20. Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A. Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics—force biased Monte Carlo simulations. ACS Nano, 2010, 4(11): 6665–6672

    Article  CAS  Google Scholar 

  21. Page A J, Yamane H, Ohta Y, Irle S, Morokuma K. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles. Journal of the American Chemical Society, 2010, 132(44): 15699–15707

    Article  CAS  Google Scholar 

  22. Amara H, Bichara C, Ducastelle F. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition. Physical Review Letters, 2008, 100(5): 056105

    Article  CAS  Google Scholar 

  23. Zhao J, Martinez-Limia A, Balbuena P B. Understanding catalysed growth of single-wall carbon nanotubes. Nanotechnology, 2005, 16 (7): S575–S581

    Article  CAS  Google Scholar 

  24. Khalilov U, Bogaerts A, Neyts E C. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors. Nature Communications, 2015, 6: 10306

    Article  CAS  Google Scholar 

  25. Elliott J A, Shibuta Y, Amara H, Bichara C, Neyts E C. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale, 2013, 5(15): 6662–6676

    Article  CAS  Google Scholar 

  26. Page A J, Ding F, Irle S, Morokuma K. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: A review. Reports on Progress in Physics, 2015, 78(3): 036501

    Article  CAS  Google Scholar 

  27. Neyts E C. PECVD growth of carbon nanotubes: From experiment to simulation. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2012, 30: 030803

    Google Scholar 

  28. Meyyappan M. A review of plasma enhanced chemical vapour deposition of carbon nanotubes. Journal of Physics. D, Applied Physics, 2009, 42(21): 213001

    Article  Google Scholar 

  29. Diega G G, Gilbert D M, Javier A, Perla B B. Dynamic evolution of supported metal nanocatalyst/carbon structure during single-walled carbon nanotube growth. ACS Nano, 2012, 6(1): 720–735

    Article  Google Scholar 

  30. Diarra M, Zappelli A, Amara H, Ducastelle F, Bichara C. Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth. Physical Review Letters, 2012, 109(18): 185501

    Article  CAS  Google Scholar 

  31. Neyts E C, van Duin A C T, Bogaerts A. Insights in the plasma assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field. Journal of the American Chemical Society, 2012, 134(2): 1256–1260

    Article  CAS  Google Scholar 

  32. Mees M J, Pourtois G, Neyts E C, Thijsse B J, Stesmans A. Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(13): 134301

    Article  Google Scholar 

  33. Bal K M, Neyts E C. On the time scale associated with Monte Carlo simulations. Journal of Chemical Physics, 2014, 141(20): 204104

    Article  Google Scholar 

  34. Timonova M, Groenewegen J, Thijsse B J. Modeling diffusion and phase transitions by a uniform-acceptance force-bias Monte Carlo method. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(14): 144107

    Article  Google Scholar 

  35. Neyts E C, Bogaerts A. Combining molecular dynamics with Monte Carlo simulations: Implementations and applications. Theoretical Chemistry Accounts, 2013, 132(2): 1320

    Article  Google Scholar 

  36. Neyts E C, Thijsse B J, MeesMJ, Bal KM, Pourtois G. Establishing uniform acceptance in force biased Monte Carlo simulations. Journal of Chemical Theory and Computation, 2012, 8(6): 1865–1869

    Article  CAS  Google Scholar 

  37. Neyts E C, van Duin A C T, Bogaerts A. Changing chirality during single-walled carbon nanotube growth: A reactive molecular dynamics/Monte Carlo study. Journal of the American Chemical Society, 2011, 133(43): 17225–17231

    Article  CAS  Google Scholar 

  38. Kato T, Hatakeyama R. Formation of freestanding single-walled carbon nanotubes by plasma-enhanced CVD. Chemical Vapor Deposition, 2006, 12(6): 345–352

    Article  CAS  Google Scholar 

  39. Nozaki T, Karatsu T, Ohnishi K, Okazaki K. A pressure-dependent selective growth of single-walled and multi-walled carbon nanotubes using plasma enhanced chemical vapor deposition. Carbon, 2010, 48(1): 232–238

    Article  CAS  Google Scholar 

  40. Neyts E C. On the role of ions in plasma catalytic carbon nanotube growth: A review. Frontiers of Chemical Science and Engineering, 2015, 9(2): 154–162

    Article  CAS  Google Scholar 

  41. Neyts E C, Ostrikov K, Han Z J, Kumar S, van Duin A C T, Bogaerts A. Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment. Physical Review Letters, 2013, 110(6): 065501

    Article  CAS  Google Scholar 

  42. Neyts E C, Bogaerts A. Ion irradiation for improved graphene network formation in carbon nanotube growth. Carbon, 2014, 77: 790–795

    Article  CAS  Google Scholar 

  43. Shariat M, Hosseini S I, Shokri B, Neyts E C. Plasma enhanced growth of single walled carbon nanotubes at low temperature: A reactive molecular dynamics simulation. Carbon, 2013, 65: 269–276

    Article  CAS  Google Scholar 

  44. Shariat M, Shokri B, Neyts E C. On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition. Chemical Physics Letters, 2013, 590: 131–135

    Article  CAS  Google Scholar 

  45. Chen H L, Lee H M, Chen S H, Chao Y, Chang M B. Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration and prospects. Applied Catalysis B: Environmental, 2008, 85(1-2): 1–9

    Article  CAS  Google Scholar 

  46. Van Durme J, Dewulf J, Leys C, Van Langenhove H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78 (3-4): 324–333

    Article  Google Scholar 

  47. Kim H H, Ogata A. Nonthermal plasma activates catalyst: From current understanding and future prospects. European Physical Journal Applied Physics, 2001, 55(1): 13806

    Article  Google Scholar 

  48. Zhang Y R, Van Laer K, Neyts E C, Bogaerts A. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67

    Article  CAS  Google Scholar 

  49. Zhang Y R, Neyts E C, Bogaerts A. Influence of the material dielectric constant on plasma generation inside catalyst pores. Journal of Physical Chemistry C, 2016, 120(45): 25923–25934

    Article  CAS  Google Scholar 

  50. Van Laer K, Bogaerts A. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science & Technology, 2016, 25(1): 015002

    Article  Google Scholar 

  51. Van Laer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044

    Article  Google Scholar 

  52. Zhang Y, Wang H Y, Jiang W, Bogaerts A. Two-dimensional particle-in-cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 2015, 17(8): 083056

    Article  Google Scholar 

  53. Neyts E C, Bal K M. Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations. Plasma Processes and Polymers, 2017, 14(6): e1600158

    Article  Google Scholar 

  54. Somers W, Bogaerts A, van Duin A C T, Neyts E C. Plasma species interacting with nickel surfaces: Towards an atomic scale understanding of plasma-catalysis. Journal of Physical Chemistry C, 2012, 116(39): 20958–20965

    Article  CAS  Google Scholar 

  55. Somers W, Bogaerts A, van Duin A C T, Huygh S, Bal K M, Neyts E C. Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale study. Catalysis Today, 2014, 211: 131–136

    Article  Google Scholar 

  56. Somers W, Bogaerts A, van Duin A C T, Neyts E C. Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014, 154-155: 1–8

    Article  CAS  Google Scholar 

  57. Neyts E C. Plasma-surface interactions in plasma catalysis. Plasma Chemistry and Plasma Processing, 2016, 36(1): 185–212

    Article  CAS  Google Scholar 

  58. Halonen L, Bernasek S L, Nesbitt D J. Reactivity of vibrationally excited methane on nickel surfaces. Journal of Chemical Physics, 2001, 115(12): 5611–5619

    Article  CAS  Google Scholar 

  59. Jackson B, Nave S. The dissociative chemisorption of methane on Ni(111): The effects of molecular vibration and lattice motion. Journal of Chemical Physics, 2013, 138(17): 174705

    Article  Google Scholar 

  60. Shirazi M, Neyts E C, Bogaerts A. DFT study of Ni-catalyzed plasma dry reforming of methane. Applied Catalysis B: Environmental, 2017, 205: 605–614

    Article  CAS  Google Scholar 

  61. Huygh S, Neyts E C. Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies. Journal of Physical Chemistry C, 2015, 119(9): 4908–4921

    Article  CAS  Google Scholar 

  62. Huygh S, Bogaerts A, Neyts E C. How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). Journal of Physical Chemistry C, 2016, 120(38): 21659–21669

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik C. Neyts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neyts, E.C. Atomistic simulations of plasma catalytic processes. Front. Chem. Sci. Eng. 12, 145–154 (2018). https://doi.org/10.1007/s11705-017-1674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1674-7

Keywords

Navigation