Skip to main content
Log in

Combining Monte Carlo simulations and experimental design for incorporating risk and uncertainty in investment decisions for cleantech: a fast pyrolysis case study

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The value of phytoextracting crops (plants cultivated for soil remediation) depends on the profitability of the sequential investment in a conversion technology aimed at the economic valorization of the plants. However, the net present value (NPV) of an investment in such an innovative technology is risky due to technical and economic uncertainties. Therefore, decision makers want to dispose of information about the probability of a positive NPV, the largest possible loss, and the crucial economic and technical parameters influencing the NPV. This paper maps the total uncertainty in the NPV of an investment in fast pyrolysis for the production of combined heat and power from willow cultivated for phytoextraction in the Belgian Campine. The probability of a positive NPV has been calculated by performing Monte Carlo simulations. Information about possible losses has been provided by means of experimental design. Both methods are then combined in order to identify the key economic and technical parameters influencing the project’s profitability. It appears that the case study has a chance of 87% of generating a positive NPV with an expected value of 3 million euro (MEUR), while worst-case scenarios predict possible losses of 7 MEUR. The amount of arable land, the biomass yield, the purchase price of the crop, the policy support, and the product yield of fast pyrolysis are identified as the most influential parameters. It is concluded that both methods, i.e., Monte Carlo simulations and experimental design, provide decision makers with complementary information with regard to economic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aven T (2003) Foundations of risk analysis. A knowledge and decision-oriented perspective. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Aven T, Nilsen EF, Nilsen T (2004) Expressing economic risk—review and presentation of a unifying approach. Risk Anal 24(4):989–1005

    Article  Google Scholar 

  • Aydinli B, Caglar A, Pekol S, Karaci A (2017) The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network. Energy Explor Exploit 35(6):698–712

    Article  CAS  Google Scholar 

  • Bridgwater AV (ed) (2005) Fast pyrolysis of biomass: a handbook. CPL Press, Newbury

    Google Scholar 

  • Bridgwater AV (2009a) Technical and economic assessment of thermal processes for biofuels. Report for the NNFCC project 08/018. https://www.globalbioenergy.org/uploads/media/0906_COPE_-_Technical_and_economic_assessment_of_thermal_processes_for_biofuels.pdf

  • Bridgwater AV (2009b) Technical and economic assessment of thermal processes for biofuels. NNFCC project 08/018. COPE Ltd

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94

    Article  CAS  Google Scholar 

  • Bridgwater AV, Toft A, Brammer J (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev 6:181–248

    Article  CAS  Google Scholar 

  • Brown TR, Wright MM (2014) Techno-economic impacts of shale gas on cellulosic biofuel pathways. Fuel 117(Part B):989–995

    Article  CAS  Google Scholar 

  • Brown TR, Thilakaratne R, Brown RC, Hu G (2013) Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel 106:463–469

    Article  CAS  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 3–11

    Google Scholar 

  • Gadallah M (2011) An alternative to Monte Carlo simulation method. Int J Exp Des Process Optim 2(2):93–101

    Article  Google Scholar 

  • Haimes YY (2004) Risk modeling, assessment, and management (Wiley Series in System Engineering and Management). Wiley, Hoboken

    Book  Google Scholar 

  • Hertz DB (1979) Risk analysis in capital investment. Harvard Bus Rev 57(5):95–106

    Google Scholar 

  • Hsu DD (2012) Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing. Biomass Bioenerg 45:41–47

    Article  CAS  Google Scholar 

  • Hu W (2015) Techno-economic, uncertainty, and optimization analysis of commodity product production from biomass fast pyrolysis and bio-oil upgrading. Graduate theses and Dissertations. Paper 14400

  • Islam MN, Ani FN (2000) Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Biores Technol 73:67–75

    Article  CAS  Google Scholar 

  • Karaci A, Caglar A, Aydinli B, Pekol S (2016) The pyrolysis process verification of hydrogen rich gas (H-rG) production by artificial neural network (ANN). Int J Hydrog Energy 41:4570–4578

    Article  CAS  Google Scholar 

  • Kazantzi V, El-Halwagi AM, Kazantzis N, El-Halwagi MM (2013) Managing uncertainties in a safety-constrained process system for solvent selection and usage: an optimization approach with technical, economic, and risk factors. Clean Technol Environ Policy 15(2):213–224

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Khan Niazi N, Murtaza B, Bibi I et al (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Koppejan J, de Boer-Meulman P (2005) De verwachte beschikbaarheid van biomassa in 2010. SenterNovem, Utrecht, p 60

    Google Scholar 

  • Kuppens T (2012) Techno-economic assessment of fast pyrolysis for the valorisation of short rotation coppice cultivated for phytoextraction. Hasselt University, Diepenbeek

    Google Scholar 

  • Kuppens T, Thewys T (2010) Economics of flash pyrolysis of short rotation willow from phytoextraction. Paper presented at the 18th European biomass conference and exhibition, from research to industry and markets, Lyon, May 3–7, 2010

  • Kuppens T, Cornelissen T, Carleer R, Yperman J, Schreurs S, Jans M et al (2010) Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams. J Environ Manage 91:2736–2747

    Article  CAS  Google Scholar 

  • Kuppens M, Umans L, Werquin W, Thibau B, Smeets K, Vangilbergen B (2011) Tarieven en capaciteiten voor storten en verbranden. Actualisatie tot 2010. Mechelen: OVAM

  • Kuppens T, Van Dael M, Vanreppelen K, Thewys T, Yperman J, Carleer R et al (2015) Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J Clean Prod 88:336–344. https://doi.org/10.1016/j.jclepro.2014.07.023

    Article  CAS  Google Scholar 

  • Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function—assessed by the example of cadmium remediation by willow (Salix ssp). Agric Syst 89:68–89

    Article  Google Scholar 

  • Li B (2015) Techno-economic and uncertainty analysis of fast pyrolysis and gasi cation for biofuel production. Graduate theses and Dissertations, 14932. http://lib.dr.iastate.edu/etd/14932

  • Magalhães AI, Petrovic D, Rodriguez AL, Adi Putra Z, Thielemans G (2009) Techno-economic assessment of biomass pre-conversion processes as a part of biomass-to-liquids line-up. Biofuels Bioprod Biorefin 3:584–600

    Article  CAS  Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL et al (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  CAS  Google Scholar 

  • Novo LB, Mahler CF, González L (2015) Plants to harvest rhenium: scientific and economic viability. Environ Chem Lett 13(4):439–445

    Article  CAS  Google Scholar 

  • Ochelen S, Putzeijs B (2008) Milieubeleidskosten—Begrippen en berekeningsmethoden. Environment, Nature and Energy Department of the Flemish Government, Brussels

    Google Scholar 

  • Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178:389–397

    Article  Google Scholar 

  • Plackett R, Burman J (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325

    Article  Google Scholar 

  • Rentsch L, Aubel IA, Schreiter N, Höck M, Bertau M (2016) PhytoGerm: extraction of germanium from biomass—an economic pre-feasibility study. J Bus Chem 13(1):47–58

    Google Scholar 

  • Rogers JG, Brammer JG (2012) Estimation of the production cost of fast pyrolysis bio-oil. Biomass Bioenerg 36:208–217

    Article  CAS  Google Scholar 

  • Savvides SC (1994) Risk analysis in investment appraisal. Proj Apprais 9(1):3–18

    Article  Google Scholar 

  • Schreurs E, Voets T, Thewys T (2011) GIS-based assessment of the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium. Biomass Bioenerg 35(10):4469–4480

    Article  CAS  Google Scholar 

  • Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J (2010) Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. [Article]. J Anal Appl Pyrol 87(1):1–7. https://doi.org/10.1016/j.jaap.2009.09.003

    Article  CAS  Google Scholar 

  • Thornley P, Rogers JG, Huang JW (2008) Quantification of employment from biomass power plants. Renew Energy 33:1922–1927

    Article  Google Scholar 

  • Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33:1206–1223

    Article  Google Scholar 

  • van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Article  CAS  Google Scholar 

  • Van Groenendaal WJ (1998) Estimating NPV variability for deterministic models. Eur J Oper Res 107:202–213

    Article  Google Scholar 

  • Van Groenendaal WJ, Kleijnen JP (1997) On the assessment of economic risk: factorial design versus Monte Carlo methods. Reliab Eng Syst Saf 57:91–102

    Article  Google Scholar 

  • Van Groenendaal WJ, Kleijnen JP (2002) Deterministic versus stochastic sensitivity analysis in investment problems: an environmental case study. Eur J Oper Res 141:8–20

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vassilev A, Schwitzguébel J-P, Thewys T, Van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34

    Article  CAS  Google Scholar 

  • Voets T, Kuppens T, Thewys T (2011) Economics of electricity and heat production by gasification or flash pyrolysis of short rotation coppice in Flanders (Belgium). Biomass Bioenerg 35(5):1912–1924

    Article  Google Scholar 

  • Voets T, Neven A, Thewys T, Kuppens T (2013) GIS-based location optimization of a biomass conversion plant on contaminated willow in the Campine region (Belgium). Biomass Bioenerg 55:339–349

    Article  Google Scholar 

  • Vose D (2000) Risk analysis—a quantitative guide. Wiley, Chichester

    Google Scholar 

  • Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. National Renewable Energy Laboratory (NREL), Golden

    Book  Google Scholar 

  • Yang Y, Ge Y, Zeng H, Zhou X, Peng L, Zeng Q (2017) Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium. Sci Rep 7:7210. https://doi.org/10.1038/s41598-017-05834-8

    Article  CAS  Google Scholar 

  • Yatim P, Sue Lin N, Lam HL, Ah Choy E (2017) Overview of the key risks in the pioneering stage of the Malaysian biomass industry. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-017-1369-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kuppens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuppens, T., Rafiaani, P., Vanreppelen, K. et al. Combining Monte Carlo simulations and experimental design for incorporating risk and uncertainty in investment decisions for cleantech: a fast pyrolysis case study. Clean Techn Environ Policy 20, 1195–1206 (2018). https://doi.org/10.1007/s10098-018-1543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1543-1

Keywords

Navigation