Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2014

Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air

  • Sammy Verbruggen EMAIL logo , Tom Tytgat , Steven Passel , Johan Martens and Silvia Lenaerts
From the journal Chemical Papers

Abstract

In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.

[1] Batterman, S., Godwin, C., & Jia, C. R. (2005). Long duration tests of room air filters in cigarette smokers’ homes. Environmental Science & Technology, 39, 7260–7268. DOI: 10.1021/es048951q. http://dx.doi.org/10.1021/es048951q10.1021/es048951qSearch in Google Scholar

[2] Bekö, G., Clausen, G., & Weschler, C. J. (2008). Sensory pollution from bag filters, carbon filters and combinations. Indoor Air, 18, 27–36. DOI: 10.1111/j.1600-0668.2007.00501.x. http://dx.doi.org/10.1111/j.1600-0668.2007.00501.x10.1111/j.1600-0668.2007.00501.xSearch in Google Scholar

[3] Bennett, A. (2009). Strategies and technologies: Controlling indoor air quality. Filtration & Separation, 46, 14–17. DOI: 10.1016/s0015-1882(09)70155-7. http://dx.doi.org/10.1016/S0015-1882(09)70155-710.1016/S0015-1882(09)70155-7Search in Google Scholar

[4] Bianchi, C. L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., & Capucci, V. (2014). Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental, 146, 123–130. DOI: 10.1016/j.apcatb.2013.02.047. http://dx.doi.org/10.1016/j.apcatb.2013.02.04710.1016/j.apcatb.2013.02.047Search in Google Scholar

[5] Birnie, M., Riffat, S., & Gillott, M. (2006). Photocatalytic reactors: design for effective air purification. International Journal of Low-Carbon Technologies, 1, 47–58. DOI: 10.1093/ijlct/1.1.47. http://dx.doi.org/10.1093/ijlct/1.1.4710.1093/ijlct/1.1.47Search in Google Scholar

[6] Black, W. C. (1990). The CE plane: A graphic representation of cost-effectiveness. Medical Decision Making, 10, 212–214. DOI: 10.1177/0272989x9001000308. http://dx.doi.org/10.1177/0272989X900100030810.1177/0272989X9001000308Search in Google Scholar

[7] Boardman, A. E., Greenberg, D. H., Vining, A. R., & Weimer, D. L. (2006). Cost-benefit analysis: concepts and practice (3rd ed.). New Jersey, NJ, USA: Pearson Education. Search in Google Scholar

[8] Briggs, A., & Fenn, P. (1998). Confidence intervals or surfaces? Uncertainty on the cost-effectiveness plane. Health Economics, 7, 723–740. DOI: 10.1002/(sici)1099-1050(199812)7:8〈723::aid-hec392〉3.0.co;2-o. http://dx.doi.org/10.1002/(SICI)1099-1050(199812)7:8<723::AID-HEC392>3.0.CO;2-O10.1002/(SICI)1099-1050(199812)7:8<723::AID-HEC392>3.0.CO;2-OSearch in Google Scholar

[9] Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001. http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.00110.1016/j.progsolidstchem.2004.08.001Search in Google Scholar

[10] Compernolle, T., Van Passel, S., Weyens, N., Vangronsveld, J., Lebbe, L., & Thewys, T. (2012). Groundwater remediation and the cost effectiveness of phytoremediation. International Journal of Phytoremediation, 14, 861–877. DOI: 10.1080/15226514.2011.628879. http://dx.doi.org/10.1080/15226514.2011.62887910.1080/15226514.2011.628879Search in Google Scholar

[11] Doudrick, K., Monzón, O., Mangonon, A., Hristovski, K., & Westerhoff, P. (2012). Nitrate reduction in water using com mercial titanium dioxide photocatalysts (P25, P90 and hombikat UV100). Journal of Environmental Engineering, 138, 852–861. DOI: 10.1061/(asce)ee.1943-7870.0000529. 10.1061/(ASCE)EE.1943-7870.0000529Search in Google Scholar

[12] Fujishima, A., & Zhang, X. T. (2006). Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie, 9, 750–760. DOI: 10.1016/j.crci.2005.02.055. http://dx.doi.org/10.1016/j.crci.2005.02.05510.1016/j.crci.2005.02.055Search in Google Scholar

[13] Hansen, W. J., Orth, K. D., & Robinson, R. K. (1998). Cost effectiveness and incremental cost analyses: Alternative to benefit-cost analysis for environmental remediation projects. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2, 8–12. DOI: 10.1061/(asce)1090-025x(1998)2:1(8). http://dx.doi.org/10.1061/(ASCE)1090-025X(1998)2:1(8)10.1061/(ASCE)1090-025X(1998)2:1(8)Search in Google Scholar

[14] Jammaer, J., Aprile, C., Verbruggen, S. W., Lenaerts, S., Pescarmona, P. P., & Martens, J. A. (2011). A non-aqueous synthesis of TiO2/SiO2 composites in supercritical CO2 for the photodegradation of pollutants. ChemSusChem, 4, 1457–1463. DOI: 10.1002/cssc.201100059. http://dx.doi.org/10.1002/cssc.20110005910.1002/cssc.201100059Search in Google Scholar

[15] Kwong, C.W., Chao, C. Y. H., Hui, K. S., & Wan, M. P. (2008). Removal of VOCs from indoor environment by ozonation over different porous materials. Atmospheric Environment, 42, 2300–2311. DOI: 10.1016/j.atmosenv.2007.12.030. http://dx.doi.org/10.1016/j.atmosenv.2007.12.03010.1016/j.atmosenv.2007.12.030Search in Google Scholar

[16] Löthgren, M., & Zethraeus, N. (2000). Definition, interpretation and calculation of cost-effectiveness acceptability curves. Health Economics, 9, 623–630. DOI: 10.1002/1099-1050(200010)9:7〈623::aid-hec539〉3.0.co;2-v. http://dx.doi.org/10.1002/1099-1050(200010)9:7<623::AID-HEC539>3.0.CO;2-V10.1002/1099-1050(200010)9:7<623::AID-HEC539>3.0.CO;2-VSearch in Google Scholar

[17] Mo, J. H., Zhang, Y. P., Xu, Q. J., Lamson, J. J., & Zhao, R. Z. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43, 2229–2246. DOI: 10.1016/j.atmosenv.2009.01.034. http://dx.doi.org/10.1016/j.atmosenv.2009.01.03410.1016/j.atmosenv.2009.01.034Search in Google Scholar

[18] Ohtani, B., Prieto-Mahaney, O. O., Li, D., & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216, 179–182. DOI: 10.1016/j.jphotochem.2010.07.024. http://dx.doi.org/10.1016/j.jphotochem.2010.07.02410.1016/j.jphotochem.2010.07.024Search in Google Scholar

[19] Saha, S., Wang, J. M., & Pal, A. (2012). Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Separation and Purification Technology, 89, 147–159. DOI: 10.1016/j.seppur.2012.01.012. http://dx.doi.org/10.1016/j.seppur.2012.01.01210.1016/j.seppur.2012.01.012Search in Google Scholar

[20] Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., & Fujishima, A. (1996). An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A: Chemistry, 98, 79–86. DOI: 10.1016/1010-6030(96)04328-6. http://dx.doi.org/10.1016/1010-6030(96)04328-610.1016/1010-6030(96)04328-6Search in Google Scholar

[21] Sopyan, I. (2007). Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films. Science and Technology of Advanced Materials, 8, 33–39. DOI: 10.1016/j.stam.2006.10.004. http://dx.doi.org/10.1016/j.stam.2006.10.00410.1016/j.stam.2006.10.004Search in Google Scholar

[22] Su, R., Bechstein, R., S, Esbjörnsson, B., Palmqvist, A., & Besenbacher, F. (2011). How the anatase-to-rutile ratio influences the photoreactivity of TiO2. The Journal of Physical Chemistry C, 115, 24287–24292. DOI: 10.1021/jp2086768. http://dx.doi.org/10.1021/jp208676810.1021/jp2086768Search in Google Scholar

[23] Tytgat, T., Hauchecorne, B., Smits, M., Verbruggen, S. W., & Lenaerts, S. (2012). Concept and validation of a fully automated photocatalytic test setup. Journal of Laboratory Automation, 17, 134–143. DOI: 10.1177/2211068211424554. 10.1177/2211068211424554Search in Google Scholar

[24] Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 74, 161–169. DOI: 10.1016/j.apcatb.2007.02.006. http://dx.doi.org/10.1016/j.apcatb.2007.02.00610.1016/j.apcatb.2007.02.006Search in Google Scholar

[25] Van Wesenbeeck, K., Hauchecorne, B., & Lenaerts, S. (2013). Integration of a photocatalytic coating in a corona discharge unit for plasma assisted catalysis. Journal of Environmental Solutions, 2, 16–24. Search in Google Scholar

[26] Verbruggen, S. W., Ribbens, S., Tytgat, T., Hauchecorne, B., Smits, M., Meynen, V., Cool, P., Martens, J. A., & Lenaerts, S. (2011). The benefit of glass bead supports for efficient gas phase photocatalysis: Case study of a commercial and a synthesised photocatalyst. Chemical Engineering Journal, 174, 318–325. DOI: 10.1016/j.cej.2011.09.038. http://dx.doi.org/10.1016/j.cej.2011.09.03810.1016/j.cej.2011.09.038Search in Google Scholar

[27] Verbruggen, S. W., Masschaele, K., Moortgat, E., Korany, T. E., Hauchecorne, B., Martens, J. A., & Lenaerts, S. (2012). Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science & Technology, 2, 2311–2318. DOI: 10.1039/c2cy20123b. http://dx.doi.org/10.1039/c2cy20123b10.1039/c2cy20123bSearch in Google Scholar

[28] Xu, J. H., & Shiraishi, F. (1999). Photocatalytic decomposition of acetaldehyde in air over titanium dioxide. Journal of Chemical Technology & Biotechnology, 74, 1096–1100. DOI: 10.1002/(sici)1097-4660(199911)74:11〈1096::aidjctb145〉3.0.co;2-v. http://dx.doi.org/10.1002/(SICI)1097-4660(199911)74:11<1096::AID-JCTB145>3.0.CO;2-V10.1002/(SICI)1097-4660(199911)74:11<1096::AID-JCTB145>3.0.CO;2-VSearch in Google Scholar

[29] Yu, Q. L., Ballari, M. M., & Brouwers, H. J. H. (2011). Heterogeneous photocatalysis applied to indoor building material: Towards an improved indoor air quality. Advanced Materials Research, 255–260, 2836–2840. DOI: 10.4028/www.scientific.net/amr.255-260.2836. http://dx.doi.org/10.4028/www.scientific.net/AMR.255-260.283610.4028/www.scientific.net/AMR.255-260.2836Search in Google Scholar

[30] Zhang, Y. P., Yang, R., & Zhao, R. Z. (2003). A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment, 37, 3395–3399. DOI: 10.1016/s1352-2310(03)00357-1. http://dx.doi.org/10.1016/S1352-2310(03)00357-110.1016/S1352-2310(03)00357-1Search in Google Scholar

[31] Zhang, Y. P., Mo, J. H., Li, Y. G., Sundell, J., Wargocki, P., Zhang, J. S., Little, J. C., Corsi, R., Deng, Q. H., & Leung, M. H. K. (2011). Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 45, 4329–4343. DOI: 10.1016/j.atmosenv.2011.05.041. http://dx.doi.org/10.1016/j.atmosenv.2011.05.04110.1016/j.atmosenv.2011.05.041Search in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-014-0557-3/html
Scroll to top button