Skip to main content
Log in

Elusive s-f intrasite interactions and double exchange in solids: Ferromagnetic versus nonmagnetic ground state

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

From the theory of many-electron states in atoms, we know that there exists a strong Coulomb repulsion, which results in the electronic term structure of atoms and is responsible for Hund’s rules. By expanding the Coulomb on-site repulsion into a multipolar series, we derive this interaction and show that it is also present in solids as a correlation effect, which means that the interaction requires a multideterminant version of the Hartree-Fock method. Of particular interest is the case where this interaction couples states of localized (f) and delocalized (s) electrons. We show that the interaction is bilinear in the creation/annihilation operators for localized electrons and bilinear in the operators for conduction electrons. To study the coupling, we consider a simple model in the framework of an effective limited configuration interaction method with one localized f-electron and one itinerant s-electron per crystal site. The on-site multipole interaction between the f- and s-electrons is explicitly taken into account. It is shown that depending on the low-lying excitation spectrum imposed by the crystal electric field, the model can lead not only to ferromagnetism but also to a nonmagnetic state. The model is relevant for solids with localized and itinerant electron states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Heidelberg, 1995).

    Google Scholar 

  2. A. V. Nikolaev and K. H. Michel, Phys. Rev. B: Condens. Matter 66, 054 103 (2002).

    Google Scholar 

  3. A. V. Nikolaev, Phys. Rev. B: Condens. Matter 71, 165102 (2005).

    Google Scholar 

  4. A. V. Nikolaev and K. H. Michel, J. Chem. Phys. 117, 4761 (2002).

    Article  ADS  Google Scholar 

  5. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1967).

    Google Scholar 

  6. C. Zener, Phys. Rev. 81, 440 (1951); Phys. Rev. 82, 403 (1951).

    Article  MATH  ADS  Google Scholar 

  7. Yu. Ralchenko, A. E. Kramida, J. Reader, et al. (NIST ASD Team), NIST Atomic Spectra Database (Version 3.1.5); http://physics.nist.gov/asd3 [October 6, 2008] (National Institute of Standards and Technology, Gaithersburg, MD, United States, 2008).

  8. S. Lebègue, A. Svane, M. I. Katsnelson, A. I. Lichtenstein, and O. Eriksson, Phys. Rev. B: Condens. Matter 74, 045 114 (2006).

    Google Scholar 

  9. S. Lebègue, G. Santi, A. Svane, O. Bengone, M. I. Katsnelson, A. I. Lichtenstein, and O. Eriksson, Phys. Rev. B: Condens. Matter 72, 245 102 (2005).

    Google Scholar 

  10. A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B: Condens. Matter 57, 6884 (1998).

    ADS  Google Scholar 

  11. D. J. Singh, Planewaves, Pseudopotentials, and the LAPW Method (Kluwer, Boston, MA, United States, 1994).

    Google Scholar 

  12. L. L. Hirst, Adv. Phys. 27, 231 (1978).

    Article  ADS  Google Scholar 

  13. C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon, Oxford, 1972).

    Google Scholar 

  14. A. V. Nikolaev and P. N. Dyachkov, Int. J. Quantum Chem. 89, 57 (2002).

    Article  Google Scholar 

  15. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  MATH  ADS  Google Scholar 

  16. M. T. Hutchings, in Solid State Physics: Advances in Research and Applications, Ed. by F. Seitz and D. Turnbull (Academic, New York, 1964), Vol. 16, p. 227.

    Google Scholar 

  17. J. Mulak and Z. Gajek, The Effective Crystal Field Potential (Elsevier, Amsterdam, 2000).

    Google Scholar 

  18. D. J. Newman, Adv. Phys. 20, 197 (1971); D. J. Newman, J. Phys. F: Met. Phys. 13, 1511 (1983).

    Article  ADS  Google Scholar 

  19. K. W. H. Stevens, Proc. Phys. Soc., London, Sect. A 65, 209 (1952).

    Article  MATH  ADS  Google Scholar 

  20. P. Fulde and M. Loewenhaupt, Adv. Phys. 34, 589 (1986).

    Article  ADS  Google Scholar 

  21. G. A. Gehring and K. A. Gehring, Rep. Prog. Phys. 38, 1 (1975).

    Article  ADS  Google Scholar 

  22. R. M. Lynden-Bell and K. H. Michel, Rev. Mod. Phys. 66, 721 (1994).

    Article  ADS  Google Scholar 

  23. P. Wachter, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr., L. Eyring, G. H. Lander, and G. R. Choppin (Elsevier, Amsterdam, 1994), Vol. 19, p. 177.

    Google Scholar 

  24. D. C. Koskenmaki and K. A. Gschneidner, Jr., in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1978), p. 337.

    Google Scholar 

  25. J. L. Sarrao, Physica B (Amsterdam) 259–261, 128 (1999).

    Google Scholar 

  26. J. A. Paixão, C. Detlefs, M. J. Longfield, R. Caciuffo, P. Santini, N. Bernhoeft, J. Rabizant, and G. H. Lander, Phys. Rev. Lett. 89, 187 202 (2002).

    Google Scholar 

  27. L. Forró and L. Mihály, Rep. Prog. Phys. 64, 649 (2001).

    Article  ADS  Google Scholar 

  28. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  29. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957); J. H. Van Vleck, Rev. Mod. Phys. 34, 681 (1962).

    Article  ADS  Google Scholar 

  30. O. Eriksson, M. S. S. Brooks, and B. Johansson, Phys. Rev. B: Condens. Matter 41, 7311 (1990).

    ADS  Google Scholar 

  31. S. V. Beiden, W. M. Temmerman, Z. Szotek, and G. A. Gehring, Phys. Rev. Lett. 79, 3970 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nikolaev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaev, A.V., Michel, K.H. Elusive s-f intrasite interactions and double exchange in solids: Ferromagnetic versus nonmagnetic ground state. J. Exp. Theor. Phys. 109, 286–292 (2009). https://doi.org/10.1134/S1063776109080147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109080147

PACS numbers

Navigation