Skip to main content

Advertisement

Log in

Environmental impact assessment and efficiency of cotton: the case of Northeast Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Cotton is one of the important crops that play an important role in creating a livelihood for rural people in many parts of Iran. Cotton production necessitates a large amount of resources (e.g., fossil energy and agrochemicals, all of which have the potential to damage the environment in various ways). The purpose of the current study was to evaluate the environmental effects of cotton production in the South Khorasan Province of Iran. For this purpose, life cycle assessment (LCA) and data envelopment analysis (DEA) techniques have been applied to investigate the environmental impacts of cotton production. LCA is a practical method to evaluate the environment on the product flow, in which all aspects of the product life cycle are examined by a comprehensive approach. Furthermore, combining the LCA method with other managerial strategies such as DEA could allow researchers to provide decision-makers with more practical and interpretable data. The findings of the efficiency test showed that the average technical efficiency, pure technical efficiency, and scale efficiency were 0.81, 0.92, and 0.87, respectively. Respiratory inorganics (i.e., respiratory effects resulting from winter smog caused by emissions of dust, sulfur, and nitrogen oxides to air) posed the greatest environmental burden in cotton production, followed by non-renewable energy, carcinogens, and global warming. In addition, the highest effects were on human health, and then, on resources and climate change. Energy, on-system pollution, and waste played a crucial role in the environmental impacts of cotton processing. This study suggests improving farmers' knowledge toward the optimum application of chemical fertilizers, or their substitution with green fertilizers, which reduces the environmental effect of growing cotton in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altenbuchner, C., Vogel, S., & Larcher, M. (2018). Social, economic and environmental impacts of organic cotton production on the livelihood of smallholder farmers in Odisha India. Renewable Agriculture and Food Systems, 33(4), 373–385.

    Google Scholar 

  • Arabmaldar, A., Mensah, E. K., & Toloo, M. (2021). Robust worst-practice interval DEA with non-discretionary factors. Expert Systems with Applications, 182, 115256.

    Google Scholar 

  • Avadí, A., Vazquez-Rowe, I., & Freon, P. (2014). Eco-efficiency assessment of the Peruvian anchoveta steel and wooden fleets using the LCA & DEA framework. Journal of Cleaner Production, 70, 118–131.

    Google Scholar 

  • Azizi, H., & Fathi Ajirloo, S. (2010). Measurement of overall performances of decision-making units using ideal and anti-ideal decision-making units. Computers and Industrial Engineering, 59(3), 411–418.

    Google Scholar 

  • Azizi, H., & Wang, Y. (2013). Improved DEA models for measuring interval efficiencies of decision-making units. Measurement, 46(3), 1325–1332.

    Google Scholar 

  • Beagle, E., & Belmont, E. (2019). Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy, 128, 267–275.

    Google Scholar 

  • Bashari, A., Shakeri, M., Shirvan, A. R., & Najafabadi, S. A. N. (2018). Functional finishing of textiles via nanomaterials (pp. 1–70). Hoboken, NJ: Nanomaterials in the Wet Processing of Textiles.

    Google Scholar 

  • Bolandnazar, E., Keyhani, A., & Omid, M. (2014). Determination of efficient and inefficient greenhouse cucumber producers using data envelopment analysis approach, a case study: Jiroft city in Iran. Journal of Cleaner Production, 79, 108–115.

    Google Scholar 

  • Buonocore, E., Vanoli, L., Carotenuto, A., & Ulgiati, S. (2015). Integrating life cycle assessment and energy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy, 86, 476–487.

    CAS  Google Scholar 

  • Brondani, M., de Oliveira, J. S., Mayer, F. D., et al. (2019). Life cycle assessment of distillation columns manufacturing. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00459-5

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Google Scholar 

  • Chen, B., Yang, S., Cao, Q., & Qian, Y. (2020). Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse? Energy Policy, 137, 111107.

    Google Scholar 

  • Colley, T. A., Olsen, S. I., Birkved, M., & Hauschild, M. Z. (2019). Delta life cycle assessment of regenerative agriculture in a sheep farming system. Integrated Environmental Assessment and Management, 16(2), 282–290.

    Google Scholar 

  • Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through life cycle assessment: The case study of tomato products chain. Journal of Cleaner Production, 78, 121–130.

    Google Scholar 

  • De Koeijer, T. J., Wossink, G. A. A., Struik, P. C., & Renkema, J. A. (2002). Measuring agricultural sustainability in terms of efficiency: The case of dutch sugar beet growers. Journal of Environmental Management, 66, 9–17.

    Google Scholar 

  • Ebrahimi, R., & Salehi, M. (2015). Investig ation of CO2 emission reduction and improving energy use efficiency of button mushroom production using data envelopment analysis. Journal of Cleaner Production, 103, 112–119.

    CAS  Google Scholar 

  • Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies (IGES): Hayama.

    Google Scholar 

  • Enríquez, J. G., Sánchez-Begínes, J. M., Domínguez-Mayo, F. J., García-García, J. A., & Escalona, M. J. (2019). An approach to characterize and evaluate the quality of product lifecycle management software systems. Computer Standards and Interfaces, 61, 77–88.

    Google Scholar 

  • Faist Emmenegger, M. C., Reinhard, J., & Zah, R. (2009). SQCB - Sustainability quick check for biofuels intermediate background report. Dübendorf: Agroscope Reckenholz-Tänikon.

    Google Scholar 

  • Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91, 1–21.

    Google Scholar 

  • Fong, S. J., Li, G., Dey, N., Crespo, R. G., & Herrera-Viedma, E. (2020). Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Applied Soft Computing, 93, 106282.

    Google Scholar 

  • Foteinis, S., & Chatzisymeon, E. (2016). Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece. Journal of Cleaner Production, 112, 2462–2471.

    CAS  Google Scholar 

  • Garrels, M. M. (2018). Laboratory and diagnostic testing in ambulatory care e-book: A guide for health care professionals. Elsevier Health Sciences.

  • Galanopoulos, K., Aggelopoulos, S., Kamenidou, I., & Mattas, K. (2006). Assessing the effects of managerial and production practices on the efficiency of commercial pig farming. Agricultural Systems, 88(2–3), 125–141.

    Google Scholar 

  • Gatimbu, K. K., Ogada, M. J., & Budambula, N. L. M. (2019). Environmental efficiency of small-scale tea processors in Kenya: an inverse data envelopment analysis (DEA) approach. Environment, Development and Sustainability, 22(4), 3333–3345. https://doi.org/10.1007/s10668-019-00348-x

    Article  Google Scholar 

  • Goedkoop, M., Spriensma, R. (2001). The eco-indicator99: A damage oriented method for life cycle impact assessment: Methodology report.

  • Heller, M. C., & Keoleian, G. A. (2011). Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States. International Journal of Environmental Science and Technology, 45(5), 1903–1910.

    CAS  Google Scholar 

  • Huang, W., Wu, F., Han, W., Li, Q., Han, Y., Wang, G., & Wang, Z. (2022). Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors. Science of the Total Environment, 821, 153407.

    CAS  Google Scholar 

  • Humbert, S., De Schryver, A., Margni, M., Jolliet, O. (2012). IMPACT 2002: User Guide. Draft for Version Q. 2.

  • Iriarte, A., Rieradevall, J., & Gabarrell, X. (2010). Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production, 18(4), 336–345.

    CAS  Google Scholar 

  • Ishengoma, F., & Athuman, M. (2018). Internet of things to improve agriculture in subsahara Africa-a case study. International Journal of Advances in Scientific Research and Engineering, 6, 8–11.

    Google Scholar 

  • ISO. (2006a). ISO 14040 International Standard. In: Environmental management–life cycle assessment–principles and framework. Geneva, International Organisation for Standardization.

  • ISO. (2006b). International Organization for Standardization ISO 14044. Environmental Managemente Life Cycle Assessment-erequirements and Guidelines.

  • Jalili, D., RadFard, M., Soleimani, H., Nabavi, S., Akbari, H., Akbari, H., & Adibzadeh, A. (2018). Data on nitrate–nitrite pollution in the groundwater resources a Sonqor plain in Iran. Data in Brief, 20, 394–401.

    Google Scholar 

  • Jiang, R., & Wu, P. (2019). Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions. Transportation Research Part d: Transport and Environment, 77, 148–163.

    Google Scholar 

  • Keyes, S., Tyedmers, P., & Beazley, K. (2014). Evaluating the environmental impacts of conventional and organic apple production in Nova Scotia, Canad a, through life cycle assessment. Journal of Cleaner Production, 104, 40–51.

    Google Scholar 

  • Khatri, P., Jain, S., & Pandey, S. A. (2017). Cradle-to-gate assessment of environmental impacts for production of mustard oil using life cycle assessment approach. Journal of Cleaner Production, 166, 988–997.

    Google Scholar 

  • Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., & Clark, S. (2014a). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183–192.

    CAS  Google Scholar 

  • Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Shariati, H. R., Anuar, N. B., & Mat Kiah, M. L. (2015). Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner Production, 86, 67–77.

    Google Scholar 

  • Khoshnevisan, B., Rafiee, S., & Mousazadeh, H. (2013a). Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy, 50, 29–37.

    Google Scholar 

  • Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2014b). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183–192.

    CAS  Google Scholar 

  • Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., & Sefeedpari, P. (2013b). Prognostication of environmental indices in potato production using artificial neural networks. Journal of Cleaner Production, 51(402), 409.

    Google Scholar 

  • Khoshnevisan, B., Rajaeifar, M. A., Clark, S., Shamahirband, S., Anuar, N. B., Mohd Shuib, N. L., & Gani, A. (2014). Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of the Total Environment, 481, 242–251.

    CAS  Google Scholar 

  • Knudsen, M. T., Yu-Hui, Q., Yan, L., & Halberg, N. (2010). Environmental assessment of organic soybean (Glycine max) imported from China to Denmark: A case study. Journal of Cleaner Production, 18(14), 1431–1439.

    CAS  Google Scholar 

  • Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154, 437–446.

    Google Scholar 

  • Kumar, S., Saini, N., & Mohapatra, S. K. (2016). Producer gas production from cotton stalk and sugarcane bagasse in a downdraft gasifier: Composition and higher heating value investigation. Journal of Basic and Applied Engineering Research, 3, 1034–1037.

    Google Scholar 

  • Kuosmanen, T., & Kortelainen, M. (2005). Measuring eco-efficiency of production with data envelopment analysis. Journal of Industrial Ecology, 9(4), 59–72.

    CAS  Google Scholar 

  • Maaoui, M., Boukchina, R., & Hajjaji, N. (2020). Environmental life cycle assessment of Mediterranean tomato: Case study of a Tunisian soilless geothermal multi-tunnel greenhouse. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00618-z

    Article  Google Scholar 

  • Mahlknecht, J., González-Bravo, R., & Loge, F. J. (2020). Water-energy-food security: A nexus perspective of the current situation in Latin America and the Caribbean. Energy, 194, 116824.

    Google Scholar 

  • Mahmud, M. A., Huda, N., Farjana, S. H., & Lang, C. (2019). Comparative life cycle environmental impact analysis of lithium-ion (LiIo) and nickel-metal hydride (NiMH) batteries. Batteries, 5(1), 22.

    CAS  Google Scholar 

  • Martinopoulos, G. (2020). Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis. Applied Energy, 257, 114035.

    Google Scholar 

  • Mobtaker, H. G., Akram, A., & Keyhani, A. (2012). Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development, 16, 84–89.

    Google Scholar 

  • Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Dalgaard, T., & Knudsen, T. (2015). Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production, 106, 521–532.

    Google Scholar 

  • Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S. H., & Nonhebel, S. (2014). Energy use efficiencyand greenhouse gas emissions of farming systems in North Iran. Renewable and Sustainable Energy Reviews, 30, 724–733.

    CAS  Google Scholar 

  • Mohmad, R. S., Verrastro, V., Cardone, G., Bteich, M. R., Favia, M., Moretti, M., & Roma, R. (2014). Optimization of organic and conventional olive agricultural practices from a life cycle assessme nt and life cycle costing perspectives. Journal of Cleaner Production, 70, 78–89.

    Google Scholar 

  • Mohseni, P., Borghei, A. M., & Khanali, M. (2018). Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production. Journal of Cleaner Production, 197, 937–947.

    CAS  Google Scholar 

  • Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011a). Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy, 36(5), 2765–2772.

    Google Scholar 

  • Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011b). Optimization of energy consumption for soybean production using data envelopment analysis (DEA) approach. Applied Energy, 88(11), 3765–3772.

    Google Scholar 

  • Mustafa, F. S., Khan, R. U., & Mustafa, T. (2021). Technical efficiency comparison of container ports in Asian and Middle East region using DEA. The Asian Journal of Shipping and Logistics, 37(1), 12–19.

    Google Scholar 

  • Nemecek, T., Kagi, T. (2007). Life cycle inventories of agricultural production systems. Eco invent report No. 15 Dübendorf, CH. Swiss Centre for Life Cycle Inventories. Retrieved from http://www.ecoinvent.org /documentation /reports/.

  • Nemecek, T., & Schnetzer, J. (2011). Methods of assessment of direct field emissions for LCIs of agricultural production systems (p. 35). Zurich: Agroscope Reckenholz-Tänikon Research Station ART.

    Google Scholar 

  • Nemecek, T., Bengoa, X., Lansche, J., Mouron, P., Rossi, V., & Humbert, S. (2014). Methodological guidelines for the life cycle inventory of agricultural products Version 2.0. World Food LCA Database (WFLDB): Quantis and Agroscope, Lausanne and Zurich, Switzerland.

    Google Scholar 

  • Nemecek, T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B., & Chervet, A. (2011). Life cycle assessment of Swiss farming systems: II Extensive and Intensive production. Agricultural Systems, 104(3), 233–245.

    Google Scholar 

  • Nemecek, T., Julian, S., & Jürgen, R. (2014). Updated and harmonised greenhouse gas emissions for crop inventories. The International Journal of Life Cycle Assessment, 21, 1–18.

    Google Scholar 

  • Odey, G., Adelodun, B., Kim, S. H., & Choi, K. S. (2021). Status of environmental life cycle assessment (LCA): A case study of South Korea. Sustainability, 13(11), 6234.

    Google Scholar 

  • Padilla, F. M., Gallardo, M., & Manzano-Agugliaro, F. (2018). Global trends in nitrate leaching research in the 1960–2017 period. Science of the Total Environment, 643, 400–413.

    CAS  Google Scholar 

  • Pauer, E., Wohner, B., Heinrich, V., & Tacker, M. (2019). Assessing the environmental sustainability of food packaging: An extended life cycle assessment including packaging-related food losses and waste and circularity assessment. Sustainability, 11(3), 925.

    Google Scholar 

  • Pennington, D. W., Margni, M., Amman, C., & Jolliet, O. (2005). Multimedia fate and human intake modeling: Spatial versus non-spatial insights for chemical emissions in Western Europe. International Journal of Environmental Science and Technology, 39(4), 1119–1128.

    CAS  Google Scholar 

  • Picazo-Tadeo, A. J., Gomez-Limon, J. A., & Reig-Martínez, E. (2011). Assessing farming eco-efficiency: A data envelopment analysis approach. Journal of Environmental Management, 92, 1154–1164.

    Google Scholar 

  • Pishgar Komleh, S. H., Keyhani, A., Rafiee, S., & Sefeedpary, P. (2011). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy, 36, 3335–3341.

    Google Scholar 

  • Pishgar-Komleh, S. H., Ghahderijani, M., & Sefeedpari, P. (2012). Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33, 183–191.

    Google Scholar 

  • PRé, V.A. (2016). SimaPro database manual methods library. Retrieved from https://www.pre-sustainability.Com/download/DatabaseManualMethods.pdf.

  • Rafiee, S., Khoshnevisan, B., Mohammadi, I., Aghbashlo, M., Mousazadeh, H., & Clark, S. (2016). Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: An Iranian case study. Science of the Total Environment, 562, 614–627.

    CAS  Google Scholar 

  • Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 51, 886–8998.

    Google Scholar 

  • Reig-Martinez, R., & Picazo-Tadeo, A. J. (2004). Analysing farming systems with data envelopment analysis: Citrus farming in Spain. Agricultural Systems, 82, 17–30.

    Google Scholar 

  • Safa, M., & Samarasinghe, S. (2012). CO2 emissions from farm inputs: Case study of wheat production in canterbury New Zealand. Environmental Pollution, 171, 126–132.

    CAS  Google Scholar 

  • Salehi, M., Ebrahimi, R., Maleki, A., & Mobtaker, H. G. (2014). An assessment of energy modeling and input costs for greenhouse button mushroom production in Iran. Journal of Cleaner Production, 64, 377–383.

    Google Scholar 

  • Salehi, S., Arashpour, M., Kodikara, J., & Guppy, R. (2021). Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. Journal of Cleaner Production, 313, 127936.

    Google Scholar 

  • Silvestro, P. C., Pignatti, S., Yang, H., Yang, G., Pascucci, S., Castaldi, F., & Casa, R. (2017). Sensitivity analysis of the aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications. PLoS ONE, 12(11), e0187485.

    Google Scholar 

  • Sanchez, T. R., Perzanowski, M., & Graziano, J. H. (2016). Inorganic arsenic and respiratory health, from early life exposure tosex-specific effects: A systematic review. Environmental Research, 147, 537–555.

    CAS  Google Scholar 

  • Smith, R., & Watson, A. (2018). Working with nature to improve the environment and profitability of irrigated cotton production at ‘Kilmarnock’, Namoi Valley, New South Wales. Ecological Management and Restoration, 19, 63–72.

    Google Scholar 

  • Solbär, L., & Keskitalo, E. C. H. (2017). A role for authority supervision in impact assessment? Examples from Finnish EIA reviews. Arctic Review, 27, 8.

    Google Scholar 

  • South Khorasan jihad of agriculture organization. (2015). Statistics of agriculture. Available in: http://kj-agrijahad.ir/dbagri/ (In Persian).

  • South Khorasan provincial government. (2016). Last divisions in province, Sarayan County. Available in: http://sk-sarayan.ir/ (in Persian)

  • Soltani, A., Rajabi, M. H., Zeinali, E., & Soltani, E. (2013). Energy inputs and greenhouse gases emissions in wheat production in Gorgan Iran. Energy, 50, 54–61.

    CAS  Google Scholar 

  • Tabatabaie, S. H., Rafiee, S., & Keyhani, A. (2012). Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy, 44(1), 211–216.

    Google Scholar 

  • Tabatabaie, S. M., Rafiee, S., Keyhani, A., & Heidari, M. (2013). Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran. Renewable Energy, 51, 7–12.

    Google Scholar 

  • Vazquez-Rowe, I., Villanueva-Rey, P., Iribarren, D., Moreira, M. T., & Feijoo, G. (2012). Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). Journal of Cleaner Production, 27, 92–102.

    Google Scholar 

  • Wiesen, K., & Wirges, M. (2017). From cumulated energy demand to cumulated raw material demand: The material footprint as a sum parameter in life cycle assessment. Energy, Sustainability and Society, 7(1), 1–13.

    Google Scholar 

  • Wowra, K., Zeller, V., & Schebek, L. (2020). Nitrogen in life cycle assessment (LCA) of agricultural crop production systems: Comparative analysis of regionalization approaches. Science of the Total Environment, 763, 143009.

    Google Scholar 

  • Yasin, S., & Sun, D. (2019). Propelling textile waste to ascend the ladder of sustainability: EOL study on probing environmental parity in technical textiles. Journal of Cleaner Production, 233, 1451–1464.

    CAS  Google Scholar 

  • Yasin, S., Behary, N., Perwuelz, A., & Guan, J. (2018). Life cycle assessment of flame retardant cotton textiles with optimized end-of-life phase. Journal of Cleaner Production, 172, 1080–1088.

    CAS  Google Scholar 

  • Yousefi, M., Khoramivafa, M., & Mondani, F. (2014). Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment, 92, 501–505.

    CAS  Google Scholar 

  • Yousefi, M., MahdaviDamghani, A., & Khoramivafa, M. (2014). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment, 493, 330–335.

    CAS  Google Scholar 

  • Zhang, C., & Rosentrater, K. A. (2019). Estimating economic and environmental impacts of red-wine-making processes in the USA. Fermentation, 5(3), 77.

    CAS  Google Scholar 

  • Zhu, N., Zhu, C., & Emrouznejad, A. (2021). A combined machine learning algorithms and DEA method for measuring and predicting the efficiency of Chinese manufacturing listed companies. Journal of Management Science and Engineering, 6, 435–448. https://doi.org/10.1016/j.jmse.2020.10.001

    Article  Google Scholar 

  • Zulfiquar, S., Yasin, M. A., Bakhsh, K., Ali, R., & Munir, S. (2019). Environmental and economic impacts of better cotton: A panel data analysis. Environmental Science and Pollution Research, 26(18), 18113–18123.

    Google Scholar 

Download references

Funding

This study received no funding from any organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Naderi Mahdei.

Ethics declarations

Conflict of interest

We have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi Mahdei, K., Esfahani, S.M.J., Lebailly, P. et al. Environmental impact assessment and efficiency of cotton: the case of Northeast Iran. Environ Dev Sustain 25, 10301–10321 (2023). https://doi.org/10.1007/s10668-022-02490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02490-5

Keywords

Navigation