Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in γFe nanoparticles

V. Augustyns, K. van Stiphout, V. Joly, T. A. L. Lima, G. Lippertz, M. Trekels, E. Menéndez, F. Kremer, U. Wahl, A. R. G. Costa, J. G. Correia, D. Banerjee, H. P. Gunnlaugsson, J. von Bardeleben, I. Vickridge, M. J. Van Bael, J. Hadermann, J. P. Araújo, K. Temst, A. Vantomme, and L. M. C. Pereira
Phys. Rev. B 96, 174410 – Published 7 November 2017
PDFHTMLExport Citation

Abstract

γFe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γFe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a=3.76(2)Å and c=3.50(2)Å, and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γFe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γFe taking tetragonal distortion into account.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 9 June 2017
  • Revised 16 October 2017

DOI:https://doi.org/10.1103/PhysRevB.96.174410

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

V. Augustyns1, K. van Stiphout1, V. Joly1, T. A. L. Lima1, G. Lippertz1, M. Trekels1, E. Menéndez1, F. Kremer2, U. Wahl3, A. R. G. Costa3, J. G. Correia3, D. Banerjee4, H. P. Gunnlaugsson1, J. von Bardeleben5, I. Vickridge5, M. J. Van Bael6, J. Hadermann7, J. P. Araújo8, K. Temst1, A. Vantomme1, and L. M. C. Pereira1,*

  • 1KU Leuven, Instituut voor Kern – en Stralingsfysica, 3001 Leuven, Belgium
  • 2Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, ACT 0200, Australia
  • 3Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
  • 4Dutch-Belgian Beamline (DUBBLE), ESRF – The European Synchrotron, CS 40220, 38043 Grenoble, France
  • 5Institut des Nanosciences de Paris (INSP), Universite Paris 6&7, UMR 7588 au CNRS 140, 75015 Paris, France
  • 6KU Leuven, Laboratory of Solid-State Physics and Magnetism, 3001 Leuven, Belgium
  • 7Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
  • 8IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Universidade do Porto, 4169-007 Porto, Portugal

  • *lino.pereira@kuleuven.be

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 17 — 1 November 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×