Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects

D. P. Lozano, S. Couet, C. Petermann, G. Hamoir, J. K. Jochum, T. Picot, E. Menéndez, K. Houben, V. Joly, V. A. Antohe, Michael Y. Hu, B. M. Leu, A. Alatas, Ayman H. Said, S. Roelants, B. Partoens, M. V. Milošević, F. M. Peeters, L. Piraux, J. Van de Vondel, A. Vantomme, K. Temst, and M. J. Van Bael
Phys. Rev. B 99, 064512 – Published 21 February 2019
PDFHTMLExport Citation

Abstract

Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (Tc). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of Tc. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and Tc of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in Tc.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 January 2018
  • Revised 11 January 2019

DOI:https://doi.org/10.1103/PhysRevB.99.064512

©2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

D. P. Lozano1, S. Couet1, C. Petermann1, G. Hamoir2, J. K. Jochum3, T. Picot3, E. Menéndez1,4, K. Houben3, V. Joly1, V. A. Antohe2,5, Michael Y. Hu6, B. M. Leu6,7, A. Alatas6, Ayman H. Said6, S. Roelants8, B. Partoens8, M. V. Milošević8, F. M. Peeters8, L. Piraux2, J. Van de Vondel3, A. Vantomme1, K. Temst1, and M. J. Van Bael3

  • 1KU Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D, 3001 Leuven, Belgium
  • 2Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
  • 3Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
  • 4Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain
  • 5Research and Development Center for Materials and Electronic & Optoelectronic Devices (MDEO), Faculty of Physics, University of Bucharest, Atomistilor str. 405, 077125 Bucharest-Magurele, Romania
  • 6Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
  • 7Department of Physics, Miami University, Oxford, Ohio 45056, USA
  • 8Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 6 — 1 February 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×