Skip to main content
Log in

Functionalization of single-layer TaS2 and formation of ultrathin Janus structures

  • Invited Feature Paper
  • Heterogeneity in 2D Material
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ab initio calculations are performed to investigate the structural, vibrational, electronic, and piezoelectric properties of functionalized single layers of TaS2. We find that single-layer TaS2 is a suitable host material for functionalization via fluorination and hydrogenation. The one-side fluorinated (FTaS2) and hydrogenated (HTaS2) single layers display indirect gap semiconducting behavior in contrast to bare metallic TaS2. On the other hand, it is shown that as both surfaces of TaS2 are saturated anti-symmetrically, the formed Janus structure is a dynamically stable metallic single layer. In addition, it is revealed that out-of-plane piezoelectricity is created in all anti-symmetric structures. Furthermore, the Janus-type single-layer has the highest specific heat capacity to which longitudinal and transverse acoustical phonon modes have contribution at low temperatures. Our findings indicate that single-layer TaS2 is suitable for functionalization via H and F atoms that the formed, anti-symmetric structures display distinctive electronic, vibrational, and piezoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A. Firsov: Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. S. Joshi, F. Bischoff, R. Koitz, D. Ecija, K. Seufert, A.P. Seitsonen, J. Hutter, K. Diller, J.I. Urgel, H. Sachdev, J.V. Barth, and W. Auwärter: Control of Molecular Organization and Energy Level Alignment by an Electronically Nanopatterned Boron Nitride Template. ACS Nano 8, 430 (2014).

    Article  CAS  Google Scholar 

  3. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong: Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett. 12, 161 (2012).

    Article  CAS  Google Scholar 

  4. P. Vogt, P. De Padova, P. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, and G.L. Lay: Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 108, 155501 (2012).

    Article  CAS  Google Scholar 

  5. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci: Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 102, 236804 (2009).

    Article  CAS  Google Scholar 

  6. H.L. Zhuang and R.G. Hennig: Electronic structures of single-layer boron pnictides. Appl. Phys. Lett. 101, 153109 (2012).

    Article  CAS  Google Scholar 

  7. A.K. Geim and I.V. Grigorieva: Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  8. D.J. Late, B. Liu, J. Luo, A. Yan, H.S.S. Matte, M. Grayson, C.N.R. Rao, and V.P. Dravid: GaS and GaSe Ultrathin Layer Transistors. Adv. Mater. 24, 3549 (2012).

    Article  CAS  Google Scholar 

  9. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, and M.C. Hersam: Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 8, 1102 (2014).

    Article  CAS  Google Scholar 

  10. C. Tan and H. Zhang: Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713 (2015).

    Article  CAS  Google Scholar 

  11. X. Qian, J. Liu, L. Fu, and J. Li: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344 (2014).

    Article  CAS  Google Scholar 

  12. S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.S. Kang, J. Baik, H.J. Shin, and S.C. Hong: Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011).

    Article  CAS  Google Scholar 

  13. J.K. Ellis, M.J. Lucero, and G.E. Scuseria: The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99, 261908 (2011).

    Article  CAS  Google Scholar 

  14. D.Y. Qiu, F.H. da Jornada, and S.G. Louie: Optical Spectrum of: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 111, 216805 (2013).

    Article  CAS  Google Scholar 

  15. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, and T.F. Heinz: Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  CAS  Google Scholar 

  16. K. He, N. Kumar, L. Zhao, Z. Wang, K.F. Mak, H. Zhao and J. Shan: Tightly bound excitons in monolayer Wse2. Phys. Rev. Lett. 113, 026803 (2014).

    Article  CAS  Google Scholar 

  17. A. Ramasubramaniam: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    Article  CAS  Google Scholar 

  18. M. Bernardi, M. Palummo, and J.C. Grossman: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664 (2013).

    Article  CAS  Google Scholar 

  19. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Lòpez-Urías, V.H. Crespi, H. Terrones, and M. Terrones: Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 13, 3447 (2013).

    Article  CAS  Google Scholar 

  20. A. Kandemir, B. Akbali, Z. Kahraman, S.V. Badalov, M. Ozcan, F. Iyikanat, and H. Sahin: Structural, electronic and phononic properties of PtSe22: from monolayer to bulk. Semicond. Sci. Technol. 33, 085002 (2018).

    Article  CAS  Google Scholar 

  21. F. Iyikanat, H. Sahin, R.T. Senger, and F.M. Peeters: Structural Transitions in Monolayer MoS2 by Lithium Adsorption. J. Phys. Chem. C 119, 10709–10715 (2015).

    Article  CAS  Google Scholar 

  22. K. Wu, E. Torun, H. Sahin, B. Chen, X. Fan, A. Pant, D.P. Wright, T. Aoki, F.M. Peeters, E. Soignard, and S. Tongay: Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nat. Commun. 7, 12952 (2016).

    Article  CAS  Google Scholar 

  23. A.K. Geremew, S. Rumyantsev, F. Kargar, B. Debnath, A. Nosek, M.A. Bloodgood, M. Bockrath, T.T. Salguero, R.K. Lake, and A.A. Balandin: Bias-Voltage Driven Switching of the Charge-Density-Wave and Normal Metallic Phases in 1TTaS2 Thin-Film Devices. ACS Nano 13, 7231–7240 (2019).

    Article  CAS  Google Scholar 

  24. N.F. Hinsche and S.K. Tygesen: Electronphonon interaction and transport properties of metallic bulk and monolayer transition metal dichalcogenide TaS2. 2D Mater. 5, 015009 (1972).

    Article  CAS  Google Scholar 

  25. Y. Yu, F. Yang, X.F. Lu, Y.J. Yan, Y-H. Cho, L. Ma, X. Niu, S. Kim, Y-W. Son, D. Feng, D.S. Li, S-W. Cheong, X.H. Chen, and Y. Zhang: Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  26. J. Shi, X. Wang, S. Zhang, L. Xiao, Y. Huan, Y. Gong, Z. Zhang, Y. Li, X. Zhou, M. Hong, Q. Fang, Q. Zhang, X. Liu, L. Gu, Z. Liu, and Y. Zhang: Two-dimensional metallic tantalum disulfide as ahydrogen evolution catalyst. Nat. Commun. 8, 958 (2017).

    Article  CAS  Google Scholar 

  27. R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M. Katsnelson, H-M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, and A.K. Geim: Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 6, 2877–2884 (2010).

    Article  CAS  Google Scholar 

  28. H. Sahin, M. Topsakal, and S. Ciraci: Structures of fluorinated graphene and their signatures. Phys. Rev. B 83, 115432 (2011).

    Article  CAS  Google Scholar 

  29. M. Yagmurcukardes: Formation of a thin monolayer via fluorination of InSe. Phys. Rev. B 100, 024108 (2019).

    Article  CAS  Google Scholar 

  30. V. Sreepal, M. Yagmurcukardes, S.K. Vasu, D.J. Kelly, S.F.R. Taylor, V.G. Kravets, Z. Kudrynskyi, Z.D. Kovalyuk, A. Patanè, A.N. Grigorenko, S.J. Haigh, C. Hardacre, L. Eaves, H. Sahin, A.K. Geim, F.M. Peeters, and R.R. Nair: Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials. 19, 6475–6481 (2019).

  31. J. Wang, S. Chen, X. Quan, and H. Yu: Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation. Chemosphere 190, 135–143 (2018).

    Article  CAS  Google Scholar 

  32. J. Zhao, C.R. Cabrera, Z. Xia, and Z. Chen: Singlesided fluorine functionalized graphene: A metalfree electrocatalyst with high efficiency for oxygen reduction reaction. Carbon 104, 56–63 (2016).

    Article  CAS  Google Scholar 

  33. Y. Li, Z. Zhu, J. Yu, and B. Ding: Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Appl. Mater. Interfaces 7, 13538–13546 (2015).

    Article  CAS  Google Scholar 

  34. M. Yagmurcukardes, C. Bacaksiz, R.T. Senger, and H. Sahin: Hydrogen-induced structural transition in single-layer ReS2. 2D Mater. 4, 035013 (2017).

    Article  CAS  Google Scholar 

  35. J.O. Sofo, A.S. Caudhari, and G.D. Barber: Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).

    Article  CAS  Google Scholar 

  36. M.S. Fuhrer, C.N. Lau, and A.H. MacDonald: Graphene: Materially Better Carbon. MRS Bull. 35, 289–295 (2010).

    Article  CAS  Google Scholar 

  37. T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, and A.I. Lichtenstein: Molecular Doping of Graphene. Nano Lett. 8, 173–177 (2008).

    Article  CAS  Google Scholar 

  38. J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, M.K. Zalalutdniov, J.W. Baldwin, J.C. Culbertson, P.E. Sheehan, and E.S. Snow: Properties of Fluorinated Graphene Films. Nano Lett. 10, 3001–3005 (2010).

    Article  CAS  Google Scholar 

  39. A-Y. Lu, H. Zhu, J. Xiao, C-P. Chuu, Y. Han, M-H. Chiu, C-C. Cheng, C-W. Yang, K-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M-Y. Chou, X. Zhang, and L-J. Li: Janus monolayers of transition metal dichalcogenides. Nanotechnol 12, 744 (2017).

    CAS  Google Scholar 

  40. A. Kandemir and H. Sahin: Janus single-layers of In2SSe: A first-principles study. Phys. Rev. B 97, 155410 (2018).

    Article  CAS  Google Scholar 

  41. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, and J. Lou: Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    Article  CAS  Google Scholar 

  42. Y.C. Cheng, Z.Y. Zhu, M. Tahir, and U. Schwingenschlögl: Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett. 102, 57001 (2013).

    Article  CAS  Google Scholar 

  43. L. Dong, J. Lou, and V.B. Shenoy: Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS Nano 11, 82428248 (2017).

    Google Scholar 

  44. Z. Kahraman, A. Kandemir, M. Yagmurcukardes, and H. Sahin: Single-Layer Janus-Type Platinum Dichalcogenides and Their Heterostructures. J. Phys. Chem. C 123, 4549–4557 (2019).

    Article  CAS  Google Scholar 

  45. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (2016).

    Article  Google Scholar 

  46. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  47. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  48. S. Grimme: Semiempirical GGAtype density functional constructed with a longrange dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  49. G. Henkelman, A. Arnaldsson, and H.A. Jonsson: A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  50. A. Togo, F. Oba, and I. Tanaka: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Article  CAS  Google Scholar 

  51. C. Ataca and S. Ciraci: Functionalization of Single-Layer MoS2 Honeycomb Structures. J. Phys. Chem. C 115, 13303 (2011).

    Article  CAS  Google Scholar 

  52. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov: Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  53. F. Iyikanat, A. Kandemir, H.D. Ozaydn, R.T. Senger, and H. Sahin: Hydrogenation-driven phase transition in single-layer TiSe2. Nanotechnology 28, 495709 (2017).

    Article  CAS  Google Scholar 

  54. M. Yagmurcukardes, R.T. Senger, F.M. Peters, and H. Sahin: Mechanical properties of monolayer GaS and GaSe crystals. Phys. Rev. B 94, 245407 (2016).

    Article  Google Scholar 

  55. M. Yagmurcukardes, C. Sevik, and F.M. Peters: Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study. Phys. Rev. B 100, 045415 (2019).

    Article  CAS  Google Scholar 

  56. H. Sahin: Structural and phononic characteristics of nitrogenated holey graphene. Phys. Rev. B 92, 085421 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeynep Kahraman or Hasan Sahin.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahraman, Z., Yagmurcukardes, M. & Sahin, H. Functionalization of single-layer TaS2 and formation of ultrathin Janus structures. Journal of Materials Research 35, 1397–1406 (2020). https://doi.org/10.1557/jmr.2020.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.64

Navigation