Skip to main content
Log in

Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III–V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III–V monolayers, which consist of rectangular GaBi-X2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X2 monolayers with a chair structure. Remarkably, the DHF GaBi-X2 monolayers are all QSH insulators, which exhibit sizeable nontrivial bandgaps ranging from 0.17 to 0.39 eV. The bandgaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Guzmán-Verri, G. G.; Lew Yan Voon, L. C. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131.

    Article  Google Scholar 

  3. Jamgotchian, H.; Colignon, Y.; Hamzaoui, N.; Ealet, B.; Hoarau, J. Y.; Aufray, B.; Bibérian, J. P. Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature. J. Phys.: Condens. Matter 2012, 24, 172001.

    Google Scholar 

  4. Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

    Article  Google Scholar 

  5. Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.

    Article  Google Scholar 

  6. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  7. Lin, C. L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structure of silicene grown on Ag(111). Appl. Phys. Express 2012, 5, 045802.

    Article  Google Scholar 

  8. Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mater. 2012, 24, 5088–5093.

    Article  Google Scholar 

  9. Arafune, R.; Lin, C. L.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structural transition of silicene on Ag(111). Surf. Sci. 2013, 608, 297–300.

    Article  Google Scholar 

  10. Feng, B. J.; Li, H.; Liu, C. C.; Shao, T. N.; Cheng, P.; Yao, Y. G.; Meng, S.; Chen, L.; Wu, K. H. Observation of Dirac cone warping and chirality effects in silicene. ACS Nano 2013, 7, 9049–9054.

    Article  Google Scholar 

  11. Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.

    Article  Google Scholar 

  12. Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

    Article  Google Scholar 

  13. Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

    Article  Google Scholar 

  14. Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.

    Article  Google Scholar 

  15. Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414–4421.

    Article  Google Scholar 

  16. Jiang, S. S.; Butler, S.; Bianco, E.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nat. Commun. 2014, 5, 3389.

    Google Scholar 

  17. Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516.

    Article  Google Scholar 

  18. Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

    Article  Google Scholar 

  19. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  20. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  21. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

    Article  Google Scholar 

  22. Zhou, H. C.; Zhao, M. W.; Zhang, X. M.; Dong, W. Z.; Wang, X. P.; Bu, H. X.; Wang, A. Z. First-principles prediction of a new Dirac-fermion material: Silicon germanide monolayer. J. Phys.: Condens. Matter 2013, 25, 395501.

    Google Scholar 

  23. Li, J.; He, C. Y.; Meng, L. J.; Xiao, H. P.; Tang, C.; Wei, X. L.; Kim, J.; Kioussis, N.; Malcolm Stocks, G.; Zhong, J. X. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe. Sci. Rep. 2015, 5, 14115.

    Article  Google Scholar 

  24. Chuang, F. C.; Yao, L. Z.; Huang, Z. Q.; Liu, Y. T.; Hsu, C. H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi. Nano Lett. 2014, 14, 2505–2508.

    Article  Google Scholar 

  25. Wang, Z. F.; Su, N. H.; Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 2013, 13, 2842–2845.

    Article  Google Scholar 

  26. Wang, Z. F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471.

    Article  Google Scholar 

  27. Wang, Z. F.; Liu, Z.; Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 2013, 110, 196801.

    Article  Google Scholar 

  28. Liu, Z.; Wang, Z. F.; Mei, J. W.; Wu, Y. S.; Liu, F. Flat Chern band in a two-dimensional organometallic framework. Phys. Rev. Lett. 2013, 110, 106804.

    Article  Google Scholar 

  29. Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

    Article  Google Scholar 

  30. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  Google Scholar 

  31. Bernevig, B. A.; Zhang, S. C. Quantum spin Hall effect. Phys. Rev. Lett. 2006, 96, 106802.

    Article  Google Scholar 

  32. Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.

    Article  Google Scholar 

  33. König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

    Article  Google Scholar 

  34. Knez, I.; Du, R. R.; Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 2011, 107, 136603.

    Article  Google Scholar 

  35. Ren, Y. F.; Qiao, Z. H.; Niu, Q. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys. 2016, 79, 066501.

    Article  Google Scholar 

  36. Takayama, A.; Sato, T.; Souma, S.; Oguchi, T.; Takahashi, T. One-dimensional edge states with giant spin splitting in a bismuth thin film. Phys. Rev. Lett. 2015, 114, 066402.

    Article  Google Scholar 

  37. Drozdov, I. K.; Alexandradinata, A.; Jeon, S.; Nadj-Perge, S.; Ji, H. W.; Cava, R. J.; Bernevig, B. A.; Yazdani, A. Onedimensional topological edge states of bismuth bilayers. Nat. Phys. 2014, 10, 664–669.

    Article  Google Scholar 

  38. Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

    Article  Google Scholar 

  39. Kou, L. Z.; Yan, B. H.; Hu, F. M.; Wu, S. C.; Wehling, T. O.; Felser, C.; Chen, C. F.; Frauenheim, T. Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. Nano Lett. 2013, 13, 6251–6255.

    Article  Google Scholar 

  40. Kou, L. Z.; Wu, S. C.; Felser, C.; Frauenheim, T.; Chen, C. F.; Yan, B. H. Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448–10454.

    Article  Google Scholar 

  41. Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

    Article  Google Scholar 

  42. Liu, C. C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.

    Article  Google Scholar 

  43. Tang, P. Z.; Chen, P. C.; Cao, W. D.; Huang, H. Q.; Cahangirov, S.; Xian, L. D.; Xu, Y.; Zhang, S. C.; Duan, W. H.; Rubio, A. Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator. Phys. Rev. B 2014, 90, 121408(R).

    Article  Google Scholar 

  44. Chen, X.; Li, L. Y.; Zhao, M. W. Hydrogenation-induced large-gap quantum-spin-Hall insulator states in a germanium–tin dumbbell structure. RSC Adv. 2015, 5, 72462–72468.

    Article  Google Scholar 

  45. Chen, X.; Li, L. Y.; Zhao, M. W. Dumbbell stanane: A large-gap quantum spin Hall insulator. Phys. Chem. Chem. Phys. 2015, 17, 16624–16629.

    Article  Google Scholar 

  46. Nie, S. M.; Song, Z. D.; Weng, H. M.; Fang, Z. Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites. Phys. Rev. B 2015, 91, 235434.

    Article  Google Scholar 

  47. Li, W. F.; Guo, M.; Zhang, G.; Zhang, Y. W. Gapless MoS2 allotrope possessing both massless Dirac and heavy fermions. Phys. Rev. B 2014, 89, 205402.

    Article  Google Scholar 

  48. Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Heine, T. Twodimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators. Phys. Rev. B 2016, 93, 035442.

    Article  Google Scholar 

  49. Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Smith, S. C.; Heine, T. Quantum spin Hall effect and topological phase transition in two-dimensional square transition-metal dichalcogenides. Phys. Rev. B 2015, 92, 085427.

    Article  Google Scholar 

  50. Sun, Y.; Felser, C.; Yan, B. H. Graphene-like Dirac states and quantum spin Hall insulators in square-octagonal MX2 (M = Mo, W; X = S, Se, Te) isomers. Phys. Rev. B 2015, 92, 165421.

    Article  Google Scholar 

  51. Liu, P. F.; Zhou, L. J.; Frauenheim, T.; Wu, L. M. New quantum spin Hall insulator in two-dimensional MoS2 with periodically distributed pores. Nanoscale 2016, 8, 4915–4921.

    Article  Google Scholar 

  52. Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

    Article  Google Scholar 

  53. Li, X. R.; Dai, Y.; Ma, Y. D.; Wei, W.; Yu, L.; Huang, B. B. Prediction of large-gap quantum spin Hall insulator and Rashba–Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Res. 2015, 8, 2954–2962.

    Article  Google Scholar 

  54. Zhou, L. J.; Kou, L. Z.; Sun, Y.; Felser, C.; Hu, F. M.; Shan, G. C.; Smith, S. C.; Yan, B. H.; Frauenheim, T. New family of quantum spin Hall insulators in two-dimensional transition-metal halide with large nontrivial band gaps. Nano Lett. 2015, 15, 7867–7872.

    Article  Google Scholar 

  55. Liu, Z.; Liu, C. X.; Wu, Y. S.; Duan, W. H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 2011, 107, 136805.

    Article  Google Scholar 

  56. Weng, H. M.; Dai, X.; Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 2014, 4, 011002.

    Google Scholar 

  57. Kou, L. Z.; Ma, Y. D.; Yan, B. H.; Tan, X.; Chen, C. F.; Smith, S. C. Encapsulated silicene: A robust large-gap topological insulator. ACS Appl. Mater. Interfaces 2015, 7, 19226–19233.

    Article  Google Scholar 

  58. Liu, Q. H.; Zhang, X. W.; Abdalla, L. B.; Fazzio, A.; Zunger, A. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 2015, 15, 1222–1228.

    Article  Google Scholar 

  59. Song, Z. G.; Liu, C. C.; Yang, J. B.; Han, J. Z.; Ye, M.; Fu, B. T.; Yang, Y. C.; Niu, Q.; Lu, J.; Yao, Y. G. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 2014, 6, e147.

    Article  Google Scholar 

  60. Liu, C. C.; Guan, S.; Song, Z. G.; Yang, S. A.; Yang, J. B.; Yao, Y. G. Low-energy effective Hamiltonian for giant-gap quantum spin Hall insulators in honeycomb X-hydride/halide (X = N–Bi) monolayers. Phys. Rev. B 2014, 90, 085431.

    Article  Google Scholar 

  61. Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

    Article  Google Scholar 

  62. Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. L.; Duan, W. H. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 2014, 89, 115429.

    Article  Google Scholar 

  63. Zhou, J. J.; Feng, W. X.; Liu, C. C.; Guan, S.; Yao, Y. G. Large-GAP QUANTUM spin Hall insulator in single layer bismuth monobromide Bi4Br4. Nano Lett. 2014, 14, 4767–4771.

    Article  Google Scholar 

  64. Luo, W.; Xiang, H. J. Room temperature quantum spin Hall insulators with a buckled square lattice. Nano Lett. 2015, 15, 3230–3235.

    Article  Google Scholar 

  65. Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methylfunctionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083–1089.

    Article  Google Scholar 

  66. Wang, Y. P.; Ji, W. X.; Zhang, C. W.; Li, P.; Li, F.; Ren, M. J.; Chen, X. L.; Yuan, M.; Wang, P. J. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene. Sci. Rep. 2016, 6, 20342.

    Article  Google Scholar 

  67. Zhao, H.; Zhang, C. W.; Ji, W. X.; Zhang, R. W.; Li, S. S.; Yan, S. S.; Zhang, B. M.; Li, P.; Wang, P. J. Unexpected giant-gap quantum spin Hall insulator in chemically decorated plumbene monolayer. Sci. Rep. 2016, 6, 20152.

    Article  Google Scholar 

  68. Zhang, R. W.; Zhang, C. W.; Ji, W. X.; Li, S. S.; Yan, S. S.; Hu, S. J.; Li, P.; Wang, P. J.; Li, F. Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films. Sci. Rep. 2016, 6, 18879.

    Article  Google Scholar 

  69. Ji, W. X.; Zhang, C. W.; Ding, M.; Li, P.; Li, F.; Ren, M. J.; Wang, P. J.; Hu, S. J.; Yan, S. S. Stanene cyanide: A novel candidate of quantum spin Hall insulator at high temperature. Sci. Rep. 2015, 5, 18604.

    Article  Google Scholar 

  70. Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M. H. Strain-induced quantum spin Hall effect in methylsubstituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.

    Article  Google Scholar 

  71. Crisostomo, C. P.; Yao, L. Z.; Huang, Z. Q.; Hsu, C. H.; Chuang, F. C.; Lin, H.; Albao, M. A.; Bansil, A. Robust large gap two-dimensional topological insulators in hydrogenated III−V buckled honeycombs. Nano Lett. 2015, 15, 6568–6574.

    Article  Google Scholar 

  72. Freitas, R. R. Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, C. M. C.; Kakanakova-Georgieva, A.; Gueorguiev, G. K. Topological insulating phases in two-dimensional bismuthcontaining single layers preserved by hydrogenation. J. Phys. Chem. C 2015, 119, 23599–23606.

    Article  Google Scholar 

  73. Ma, Y. D.; Li, X.; Kou, L. Z.; Yan, B. H.; Niu, C. W.; Dai, Y.; Heine, T. Two-dimensional inversion-asymmetric topological insulators in functionalized III-Bi bilayers. Phys. Rev. B 2015, 91, 235306.

    Article  Google Scholar 

  74. Li, L. Y.; Zhang, X. M.; Chen, X.; Zhao, M. W. Giant topological nontrivial band gaps in chloridized gallium bismuthide. Nano Lett. 2015, 15, 1296–1301.

    Article  Google Scholar 

  75. Freitas, R. R. Q.; de Brito Mota, F.; Rivelino, R.; de Castilho, C. M. C.; Kakanakova-Georgieva, A.; Gueorguiev, G. K. Tuning band inversion symmetry of buckled III-Bi sheets by halogenation. Nanotechnology 2016, 27, 055704.

    Article  Google Scholar 

  76. Li, S. S.; Ji, W. X.; Zhang, C. W.; Hu, S. J.; Li, P.; Wang, P. J.; Zhang, B. M.; Cao, C. L. Robust room-temperature quantum spin Hall effect in methyl-functionalized InBi honeycomb film. Sci. Rep. 2016, 6, 23242.

    Article  Google Scholar 

  77. Zhang, R. W.; Zhang, C. W.; Ji, W. X.; Li, S. S.; Yan, S. S.; Li, P.; Wang, P. J. Functionalized thallium antimony films as excellent candidates for large-gap quantum spin Hall insulator. Sci. Rep. 2016, 6, 21351.

    Article  Google Scholar 

  78. Zhao, M. W.; Chen, X.; Li, L. Y.; Zhang, X. M. Driving a GaAs film to a large-gap topological insulator by tensile strain. Sci. Rep. 2015, 5, 8441.

    Article  Google Scholar 

  79. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  80. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    Article  Google Scholar 

  81. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  82. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  83. Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

    Article  Google Scholar 

  84. Soluyanov, A. A.; Vanderbilt, D. Computing topological invariants without inversion symmetry. Phys. Rev. B 2011, 83, 235401.

    Article  Google Scholar 

  85. Fu, L.; Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 2006, 74, 195312.

    Article  Google Scholar 

  86. Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865.

    Article  Google Scholar 

  87. Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximallylocalised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

    Article  Google Scholar 

  88. Henini, M.; Ibáñez, J.; Schmidbauer, M.; Shafi, M.; Novikov, S. V.; Turyanska, L.; Molina, S. I.; Sales, D. L.; Chisholm, M. F.; Misiewicz, J. Molecular beam epitaxy of GaBiAs on (311) B GaAs substrates. Appl. Phys. Lett. 2007, 91, 251909.

    Article  Google Scholar 

  89. Francoeur, S.; Seong, M. J.; Mascarenhas, A.; Tixier, S.; Adamcyk, M.; Tiedje, T. Band gap of GaAs1–xBix, 0 < x <3.6%. Appl. Phys. Lett. 2003, 82, 3874–3876.

    Article  Google Scholar 

  90. Denisov, N. V.; Alekseev, A. A.; Utas, O. A.; Azatyan, S. G.; Zotov, A. V.; Saranin, A. A. Bismuth–indium two-dimensional compounds on Si(111) surface. Surf. Sci. 2016, 651, 105–111.

    Article  Google Scholar 

  91. Gruznev, D. V.; Bondarenko, L. V.; Matetskiy, A. V.; Mihalyuk, A. N.; Tupchaya, A. Y.; Utas, O. A.; Eremeev, S. V.; Hsing, C. R.; Chou, J. P.; Wei, C. M. et al. Synthesis of twodimensional TlxBi1−x compounds and Archimedean encoding of their atomic structure. Sci. Rep. 2016, 6, 19446.

    Article  Google Scholar 

  92. Ma, F. X.; Zhou, M.; Jiao, Y. L.; Gao, G. P.; Gu, Y. T.; Billic, A.; Chen, Z. F.; Du, A. J. Single layer bismuth iodide: Computational exploration of structural, electrical, mechanical and optical properties. Sci. Rep. 2015, 5, 17558.

    Article  Google Scholar 

  93. Trotter, J.; Zobel, T. The crystal structure of SbI3 and BiI3. Z. Kristallogr. 1966, 123, 67–72.

    Google Scholar 

  94. Morino, Y.; Ukaji, T.; Ito, T. Molecular structure determination by gas electron diffraction at high temperatures. II. Arsenic triiodide and gallium triiodide. Bull. Chem. Soc. Jpn. 1966, 39, 71–78.

    Article  Google Scholar 

  95. Drake, M. C.; Rosenblatt, G. M. Raman spectroscopy of gaseous GaCl3 and GaI3. J. Chem. Phys. 1976, 65, 4067–4071.

    Article  Google Scholar 

  96. Saboungi, M. L.; Howe, M. A.; Price, D. L. Structure and dynamics of molten aluminium and gallium trihalides I. Neutron diffraction. Mol. Phys. 1993, 79, 847–857.

    Google Scholar 

  97. Wang, Z. H.; Zhou, X. F.; Zhang, X. M.; Zhu, Q.; Dong, H. F.; Zhao, M. W.; Oganov, A. R. Phagraphene: A low-energy graphene allotrope composed of 5−6−7 carbon rings with distorted Dirac cones. Nano Lett. 2015, 15, 6182–6186.

    Article  Google Scholar 

  98. Zhou, L. J.; Shi, W. J.; Sun, Y.; Shao, B.; Felser, C.; Yan, B. H.; Frauenheim, T. Two-dimensional rectangular tantalum carbide halides TaCX (X = Cl, Br, I): Novel large-gap quantum spin Hall insulators. 2D Mater. 2016, 3, 035018.

    Article  Google Scholar 

  99. Giglberger, S.; Golub, L. E.; Bel’kov, V. V.; Danilov, S. N.; Schuh, D.; Gerl, C.; Rohlfing, F.; Stahl, J.; Wegscheider, W.; Weiss, D. et al. Rashba and Dresselhaus spin splittings in semiconductor quantum wells measured by spin photocurrents. Phys. Rev. B 2007, 75, 035327.

    Article  Google Scholar 

  100. Bychkov, Y. A.; Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78–81.

    Google Scholar 

  101. Lommer, G.; Malcher, F.; Rössler, U. Reduced g factor of subband Landau levels in AlGaAs/GaAs heterostructures. Phys. Rev. B 1985, 32, 6965–6967.

    Article  Google Scholar 

  102. Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

    Article  Google Scholar 

  103. Ming, W. M.; Wang, Z. F.; Zhou, M.; Yoon, M.; Liu, F. Formation of ideal Rashba states on layered semiconductor surfaces steered by strain engineering. Nano Lett. 2016, 16, 404–409.

    Article  Google Scholar 

  104. Kou, L. Z.; Tan, X.; Ma, Y. D.; Tahini, H.; Zhou, L. J.; Sun, Z. Q.; Du, A. J.; Chen, C. F.; Smith, S. C. Tetragonal bismuth bilayer: A stable and robust quantum spin Hall insulator. 2D Mater. 2015, 2, 045010.

    Article  Google Scholar 

  105. Huang, B.; Jin, K. H.; Zhuang, H. L.; Zhang, L. Z.; Liu, F. Interface orbital engineering of large-gap topological states: Decorating gold on a Si(111) surface. Phys. Rev. B 2016, 93, 115117.

    Article  Google Scholar 

  106. Wang, M. Y.; Liu, L. P.; Liu, C. C.; Yao, Y. G. van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls. Phys. Rev. B 2016, 93, 155412.

    Article  Google Scholar 

  107. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  Google Scholar 

  108. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government–department EWI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linyang Li, Ortwin Leenaerts, Xiangru Kong or François M. Peeters.

Electronic supplementary material

12274_2017_1464_MOESM1_ESM.pdf

Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Leenaerts, O., Kong, X. et al. Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators. Nano Res. 10, 2168–2180 (2017). https://doi.org/10.1007/s12274-017-1464-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1464-z

Keywords

Navigation