Skip to main content
Log in

Health implications of atmospheric aerosols from asbestos-bearing road pavements traditionally used in Southern Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Serpentine and amphibole asbestos occur naturally in certain geologic settings worldwide, most commonly in association with ultramafic rocks, along associated faults. Ultramafic rocks have been used in Piên County, Southern Brazil for decades for the purpose of road paving in rural and urban areas, but without the awareness of their adverse environmental and health impact. The aim of this study was the chemical characterization of aerosols re-suspended in two rural roads of Piên, paved with ultramafic rocks and to estimate the pulmonary deposition of asbestos aerosols. Bulk aerosol samples were analyzed by means of X-ray fluorescence spectrometry and X-ray diffraction analysis, in order to characterize elemental composition and crystallinity. Single-particle compositions of aerosols were analyzed by computer-controlled electron-probe microanalysis, indicating the presence of a few percentages of serpentine and amphibole. Given the chemical composition and size distribution of aerosol particles, the deposition efficiency of chrysotile, a sub-group of serpentine, in two principal segments of the human respiratory system was estimated using a lung deposition model. As an important finding, almost half of the inhaled particles were calculated to be deposited in the respiratory system. Asbestos depositions were significant (∼25 %) in the lower airways, even though the selected breathing conditions (rest situation, nose breathing) implied the lowest rate of respiratory deposition. Considering the fraction of inhalable suspended chrysotile near local roads, and the long-term exposure of humans to these aerosols, chrysotile may represent a hazard, regarding more frequent development of lung cancer in the population of the exposed region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  CAS  Google Scholar 

  • Asbestos Dust Mitigation Plan Guidance (ADMP) (2014) http://www.placer.ca.gov/departments/Air/NOA.aspx. Accessed 12th July 2016

  • Asgharian B, Ménache M, Miller F (2004) Modeling age-related particle deposition in humans. J Aerosol Med 17:213–223

    Article  CAS  Google Scholar 

  • Avigo D Jr, Godoi AFL, Janissek PR, Makarovska Y, Krata A, Potgieter-Vermaak S (2008) Particulate matter analysis at elementary schools in Curitiba, Brazil. Anal Bioanal Chem 391:1459–1468

    Article  CAS  Google Scholar 

  • Balásházy I, Martonen TB, Hofmann W (1990) Fiber deposition in airway bifurcations. J Aerosol Med 3:243–260

    Article  Google Scholar 

  • Balásházy I, Moustafa M, Hofmann W, Szőke R, El-Hussein A, Abdel-Rahman A (2005) Simulation of fiber deposition in bronchial airways. Inhal Toxicol 17:717–727

  • Bernstein DM, Rogers R, Smith P (2004) The biopersistence of brazilian chrysolite asbestos following inhalation. Inhal Toxicol 16:745–761

    Article  CAS  Google Scholar 

  • Bernstein D, Dunnigan J, Hesterberg T, Brown R, Velasco JAL, Barrera R (2013) Health risk of chrysotile revisited. Crit Rev Toxicol 43:154–183

  • Bondarenko I, Treiger B, Van Grieken R, Van Espen P (2005) A Windows based software package for cluster analysis. Spectrochim Acta Part B 51:441–456

    Article  Google Scholar 

  • Catherine H, Skinner W (2007) The earth, source of health and hazards: an introduction to medical geology. Annu Rev Earth Planet Sci 35:177–213

    Article  CAS  Google Scholar 

  • Cheng YS (2003) Deposition in the extrathoracic region. Aerosol Sci Technol 37:659–671

    Article  CAS  Google Scholar 

  • Chernick V, West JB (2006) The functional basis of respiratory disease. In: Chernick V, Boat TF, Wilmott RW, Bush A (eds) Kendig’s disorders of the respiratory tract in children, 7th edn. Elsevier Inc., Philadelphia, PA, USA, pp. 29–64

    Chapter  Google Scholar 

  • De Backer JW, Wos WG, Vinchurkar SC, Claes R, Drollmann A, Wulfrank D, Parizel PM, Germonpré P, De Backer W (2010) Validation of computer fluid dynamics in CT-based airway models with SPECT/CT. Radiology 257:854–862

    Article  Google Scholar 

  • Environmental Protection Agency (EPA), (1990) Environmental asbestos assessment manual; superfund method for the determination of asbestos in ambient air; part 1: method, EPA/540/2-90-005a, May 1990

  • Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I, Karg E, Mossa C, Schroeppel A, Ferron GA, Heyder J, Greaves M, MacNee W, Donaldson K (2004) Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 195:35–44

    Article  CAS  Google Scholar 

  • Godoi RHM, Godoi AFL, Worobiec A, Andrade SJ, de Hoog J, Santiago-Silva MR (2004) Characterisation of sugar cane combustion particles in the Araraquara region, Southeast Brazil. Microchim Acta 145:53–56

    Article  CAS  Google Scholar 

  • Grigg J (2009) Particulate matter exposure in children. Proc Am Thorac Soc 6:564–569

    Article  CAS  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818–1826

    CAS  Google Scholar 

  • Harper M (2008) Naturally occurring asbestos. J Environ Monit 10:1394–1408

    Article  CAS  Google Scholar 

  • Hendrickx M (2009) Naturally occurring asbestos in eastern Australia: a review of geological occurrence, disturbance and mesothelioma risk. Environ Geol 57:909–926

    Article  CAS  Google Scholar 

  • Hofmann W, Koblinger L (1992) Monte-Carlo modeling of aerosol deposition in human lungs. III: comparison with experimental data. J Aerosol Sci 23:51–63

    Article  CAS  Google Scholar 

  • Hofmann W, Bergmann R, Koblinger L (1999) Characterization of local particle deposition patterns in human and rat lungs by different morphometric parameters. J Aerosol Sci 30:651–667

    Article  CAS  Google Scholar 

  • Hoornaert S, Godoi RHM, Van Grieken R (2004) Elemental and single particle aerosol characterisation at a background station in Kazakhstan. J Atmos Chem 48:301–315

    Article  CAS  Google Scholar 

  • Horemans B, Van Grieken R (2010) Speciation and diurnal variation of thoracic, fine thoracic and sub micrometer airborne particulate matter at naturally ventilated office environments. Atmos Environ 44:1497–1505

    Article  CAS  Google Scholar 

  • Horemans B, Van Holsbeke C, Vos W, Darchuk L, Novakovic V, Fontan AC, De Backer J, Van Grieken R, De Baeker W, De Wael K (2012) Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol. Environ Sci Technol 46:12162–12169

    Article  CAS  Google Scholar 

  • Jansen KL, Larson TV, Koenig JQ, Mar TF, Fields C, Stewart J, Lippmann M (2005) Association between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ Health Perspect 113:1741–1746

    Article  CAS  Google Scholar 

  • Karrasch S, Eder G, Bolle I, Eickelberg O, Tsuda A, Schulz H (2010) Pulmonary particle deposition is dependent on the stage of postnatal lung development. Am J Respir Crit Care 181:A2190

    Google Scholar 

  • Klaassen CD (2008) Toxicology: the basic science of poisons. 7th edn. Unit 6. McGraw-Hill, London, UK, pp. 1119–1157

    Google Scholar 

  • Koblinger L, Hofmann W (1990) Monte Carlo modelling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci 21:661–674

    Article  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Möller W (2006) Ultrafine-particulate lung interactions: does size matters? J Aerosol Med 19:74–83

    Article  CAS  Google Scholar 

  • Luo S, Liu X, Mu S, Tsai SP, Wen CP (2003) Asbestos related diseases from environmental exposure to crocidolite in Da-Yao, China. I. Review of exposure and epidemiological data. Occup Environ Med 60:35–42

    Article  CAS  Google Scholar 

  • MacNee W, Donaldson K (2003) Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Respir J 21:47s–51s

    Article  CAS  Google Scholar 

  • Martonen T, Isaacs K, Hwang D (2005) Three-dimensional simulations of airways within human lungs. Cell Biochem Biophys 42:223–249

    Article  CAS  Google Scholar 

  • Metintas M, Metintas S, Hillerdal G, Ucgun I, Erginel S, Alatas F, Yildimir H (2005) Nonmalignant pleural lesions due to environmental exposure to asbestos: a field-based, cross-sectional study. Eur Respir J 26:875–880

    Article  CAS  Google Scholar 

  • Oldham MJ (2000) Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sci Technol 32:61–71

    Article  CAS  Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Raabe OG, Yeah H-C, Schum MG, Phalen RF (1976) Tracheobronchial geometry: human, dog, rat, hamster—a compilation of selected data from the project respiratory tract deposition models. UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc100754/. Accessed 12th July 2016

  • Ro CU, Osán J, Szalóki I, de Hoog J, Worobiec A, Van Grieken R (2003) Monte Carlo program for quantitative electron introduced X-ray analysis of individual particles. Anal Chem 75:851–859

    Article  CAS  Google Scholar 

  • Sakai K, Hisanaga N, Kohyama N, Shibata E, Takeuchi Y (2001) Airborne fiber concentration and size distribution of mineral fibers in area with serpentinite outcrops in Aichi Prefecture, Japan. Ind Health 39:132–140

    Article  CAS  Google Scholar 

  • Schiller CF, Gebhart J, Heyder J, Rudolf G, Stahlhofen W (1988) Deposition of monodisperse insoluble aerosol particles in the 0.005 to 0.2 μm size range within the human respiratory tract. Ann Occup Hyg 32:41–49

    Article  Google Scholar 

  • Spolnik Z, Belikov K, Van Meel K, Adriaenssens E, de Roeck F, Van Grieken R (2005) Optimization of measurement conditions of an energy dispersive X-ray fluorescence spectrometer with high-energy polarized beam excitation for analysis of aerosol filters. Appl Spectrosc 59:1465–1469

    Article  CAS  Google Scholar 

  • Sturm R, Hofmann W (2009) A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract. J Hazard Mater 170:210–218

    Article  CAS  Google Scholar 

  • Szőke R, Alföldy B, Balásházy I, Hofmann W, Sziklai-László I (2007) Size distribution, pulmonary deposition and chemical composition of Hungarian biosoluble glass fibers. Inhal Toxicol 19:325–332

    Article  Google Scholar 

  • Vallero DA, Kominsky JR, Beard ME, Crankshaw OS (2009) Efficiency of sampling and analysis of asbestos fibers on filter media: implications for exposure assessment. J Occup Environ Hyg 6:62–72

    Article  CAS  Google Scholar 

  • Vinchurkar S, De Backer L, Vos W, Van Holsbeke C, De Backer J, De Backer W (2012) A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients: effects of upper airway morphology and comparison with in vivo data. Inhal Toxicol 24:81–88

    Article  CAS  Google Scholar 

  • Williams C, Dell L, Adams R, Rose T, Van Orden D (2013) State-of-the-science assessment of non-asbestos amphibole exposure: is there a cancer risk? Environ Geochem Health 35:357–377

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1985) Reference methods for measuring man-made mineral fibers (MMMF): WHO/EURO-MMMF reference scheme. WHO Regional Office for Europe. Copenhagen, Denmark

    Google Scholar 

  • Zhang Q, Zhu Y (2012) Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air 22:33–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Bencs.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoi, R.H.M., Gonçalves, S.J., Sayama, C. et al. Health implications of atmospheric aerosols from asbestos-bearing road pavements traditionally used in Southern Brazil. Environ Sci Pollut Res 23, 25180–25190 (2016). https://doi.org/10.1007/s11356-016-7586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7586-0

Keywords

Navigation