Skip to main content
Log in

Identification of heavy metal origins related to chemical and morphological soil properties using several non-destructive X-ray analytical methods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I geo) enables the assessment of contamination by comparing current and pre-industrial concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • A.T.S.D.R. (2007). Toxicological profile for Barium, U.S. Department of Health and Human Services. Atlanta: Public Health Service.

    Google Scholar 

  • Al-Shayeb, S. M., Al-Rajhi, M. A., & Seaward, M. R. D. (1995). The data palm (Phonenix dactylifera L.) as a biomonitor of lead and other elements in arid environments. The Science of the Total Environment, 168(1), 1–10.

    Article  CAS  Google Scholar 

  • Anand, R. R., & Gilkes, R. J. (1984). Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. Journal of Soil Science, 35, 559–567.

    Article  CAS  Google Scholar 

  • Baker, D. E. (1990). Copper. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 151–176). London: Blackie & Sons.

    Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II)and Ni(II) in aqueous medium. Applied Clay Science, 41, 1–9.

    Article  CAS  Google Scholar 

  • Bingham, S., Higashijima, S., Okamato, H., & Chandrasekhar, A. (2002). The zebrafish trilobite geneiss essential for tangential migration of branchiomotor neurons. Developmental Biology, 242, 149–160.

    Article  CAS  Google Scholar 

  • Blasser, P., Zimmermann, S., Luster, J., & Shotyk, W. (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. The Science of the Total Environment, 249, 257–280.

    Article  Google Scholar 

  • Boikess, R. S., & Edelson, E. (1981). Chemical principles 2d (p. 193). New York: Harper & Row.

    Google Scholar 

  • Bondarenko, I., Treiger, B., Van Grieken, R., & Van Espen, P. (1996). IDAS: A Windows based software package for cluster analysis. Spectrochimica Acta Part B, 51, 441–456.

    Article  Google Scholar 

  • Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Analytical Chemistry, 40, 586.

    Article  CAS  Google Scholar 

  • Fiore, A., Jacob, D. J., Liu, H., Yantosca, R. M., Fairlie, T. D., & Li, Q. (2003). Variability in surface ozone background over the United States: Implications for air quality policy. Journal of Geophysical Research, 108(D24), 4787.

    Article  Google Scholar 

  • Gaetke, L. M., & Chow, K. (2003). Copper toxicity. Oxidative stress and antioxidant nutrients. Toxicology, 189, 147–163.

    Article  CAS  Google Scholar 

  • Garcia, R., & Millan, E. (1998). Assessment of Cd, Pb, and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere, 37, 1615–1625.

    Article  CAS  Google Scholar 

  • Gil, C., Boluda, R., & Ramos, J. (2004). Determination and evaluation of cadmium lead and nickel in greenhouse soils of Almeria (Spain). Chemosphere, 55, 1027–1034.

    Article  CAS  Google Scholar 

  • Glasby, G. P., & Schulz, H. D. (1999). EH, pH diagrams for Mn, Fe, Co, Ni, Cu and As under seawater conditions: Application of two new types of EH, pH diagrams to the study of specific problems in marine geochemistry. Aquatic Geochemistry, 5, 227–248.

    Article  CAS  Google Scholar 

  • Gowd, S. S., Reddy, R. M., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.

    Article  CAS  Google Scholar 

  • Gutierrez-Galindo, E. A., Munoz-Barbosa, A., Walter, L., Macias-Zamora, J. V., & Segovia-Zavala, J. A. (2007). Sources and factors influencing the spatial distribution of heavy metals in a coastal lagoon adjacent to the San Quintin volcanic field. Baja California, Mexico. Marine Pollution Bulletin, 54, 1962–1989.

    Article  Google Scholar 

  • Hans-Eike, G. (1997). Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. Journal of Geochemical Exploration, 58, 185–194.

    Article  Google Scholar 

  • Hardy, M., & Cornu, S. (2006). Location of natural trace elements in silty soils using particle size fractionation. Geoderma, 133, 295–308.

    Article  CAS  Google Scholar 

  • Heidemann, A. (1959). Adsorption of heavy metal ions on soils and constituents. Geochimica et Cosmochimica Acta, 15, 305.

    Article  Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water. USGS Water-Supply Paper, 2254, 264.

    Google Scholar 

  • Jiang, D. Z., Teng, E. J., & Liu, Y. L. (1996). The contribution of difference on the element background values in soils and the analysis of variance of single factor on soil groups. Environmental Monitoring in China, 2, 21–24.

    Google Scholar 

  • Juvanovic, S., Carrot, F., Deschamps, N., & Vukotie, P. (1995). A study of the air pollution in the surrounding of an aluminum smelter using epiphytic and lithophytic lichens. Journal of Trace Microprobe Techniques, 13, 463–471.

    Google Scholar 

  • Kabata-Pendias. (2001). Trace elements in soil and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed., p. 315). Boca Raton: CRC Press.

    Google Scholar 

  • Kerndorf, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44, 1701–1708.

    Article  Google Scholar 

  • Loska, K., Wiechula, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30, 159–165.

    Article  CAS  Google Scholar 

  • McLennan, S. M., & Murray, R. W. (1999). Geochemistry of sediments. In C. P. Marshall & R. W. Fairbridge (eds.), Encycopedia geochemistry (pp. 282–292). Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Moore, D. M., & Reynolds Jr., R. C. (1989). X-ray diffraction and the identification and analysis of clay minerals (pp. 322). New York, Oxford University Press

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Naidu, S. R., Pollard, A., Juhasz, A. L., Megharaj, M., Smith, E., Owens, G., et al. (2003). Risk based management of contaminated sites: a cost effective solution to managing contamination. In Presented at Risk based Management of Contaminated Sites: Developing Cost Effective Strategies for Remediating Contaminated sites, Rydges, North Sydney, 29 September, 2003.

  • Quartacci, M. F., Baker, A. J. M., & Navari-Izzo, F. (2005). Nitrilotriacetate-and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere, 59, 1249–1255.

    Article  CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural top soils in urban area. Environmental Geology, 43, 795–805.

    CAS  Google Scholar 

  • Rubio, B., Nombela, M.A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40, 968–980.

    Google Scholar 

  • Saini, N. K., Mukherjee, P. K., Rathi, M. S., & Khanna, P. P. (2000). Evaluation of energy-dispersive X-ray fluorescence spectrometry in the rapid analysis of silicate rocks using pressed powder pellets. X-Ray Spectrometry, 29, 166–172.

    Article  CAS  Google Scholar 

  • Samsoe-Petersen, L., Larsen, E. H., Larsen, P. B., & Bruun, P. (2002). Uptake of trace elements and PAHs by fruit and vegetable from contaminated soils. Environmental Science and Technology, 36, 3057–3063.

    Article  CAS  Google Scholar 

  • Singh, I. B., Chaturvedi, K., Morchhale, R. K., & Yegnesvaran, A. H. (2007). Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay. Journal of Hazardous Materials, 141, 215–222.

    Article  CAS  Google Scholar 

  • Sipos, P., Németh, T., Kovacs Kis, V., & Mohai, I. (2009). Association of individual soil mineral constituents and heavy metal as studied by sorption experiments and analytical electron microscopy analyses. Journal of Hazardous Materials, 168, 1512–1520.

    Article  CAS  Google Scholar 

  • Sterchkemen, T., Douay, F., Baize, D., Fourrier, H., Proix, N., & Schvatrz, C. (2004). Factors affecting trace elements concentrations in soils developed on recent marine deposits from northern France. Applied Geochemistry, 19, 89–103.

    Article  Google Scholar 

  • Tack, C. J. J., Karel, J., Assmann, M., Jack, F., & Wetzels, M. (1997). Atheroembolic disease in a female patient. American Heart Association, 96(2), 700.

    CAS  Google Scholar 

  • Tanabe, K. (1981). Solid acid and base catalysts. In J. R. Anderson & M. Boudart (Eds.), Catalysis-science and technology (vol. 2) (pp. 231–273). Berlin: Springer Verlag.

    Google Scholar 

  • Vekemans, B., Janssens, K., Vineze, L., Adams, F., & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): New developments. X-Ray Spectrometry, 23, 278–285.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Cevik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbulut, S., Grieken, R., Kılıc, M.A. et al. Identification of heavy metal origins related to chemical and morphological soil properties using several non-destructive X-ray analytical methods. Environ Monit Assess 185, 2377–2394 (2013). https://doi.org/10.1007/s10661-012-2718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2718-6

Keywords

Navigation