Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3SrRuO3 interfaces

S. Das, A. D. Rata, I. V. Maznichenko, S. Agrestini, E. Pippel, N. Gauquelin, J. Verbeeck, K. Chen, S. M. Valvidares, H. Babu Vasili, J. Herrero-Martin, E. Pellegrin, K. Nenkov, A. Herklotz, A. Ernst, I. Mertig, Z. Hu, and K. Dörr
Phys. Rev. B 99, 024416 – Published 15 January 2019
PDFHTMLExport Citation

Abstract

Interfaces of ferroic oxides can show complex magnetic textures which have strong impact on spintronics devices. This has been demonstrated recently for interfaces with insulating antiferromagnets such as BiFeO3. Here, noncollinear spin textures which can be switched in very low magnetic field are reported for conducting ferromagnetic bilayers of La0.7Sr0.3MnO3SrRuO3 (LSMO-SRO). The magnetic order and switching are fundamentally different for bilayers coherently grown in reversed stacking sequence. The SRO top layer forms a persistent exchange spring which is antiferromagnetically coupled to LSMO and drives switching in low fields of a few milliteslas. Density functional theory reveals the crucial impact of the interface termination on the strength of Mn-Ru exchange coupling across the interface. The observation of an exchange spring agrees with ultrastrong coupling for the MnO2/SrO termination. Our results demonstrate low-field switching of noncollinear spin textures at an interface between conducting oxides, opening a pathway for manipulating and utilizing electron transport phenomena in controlled spin textures at oxide interfaces.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 24 June 2018
  • Revised 4 November 2018

DOI:https://doi.org/10.1103/PhysRevB.99.024416

©2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

S. Das1,2,*, A. D. Rata1, I. V. Maznichenko1, S. Agrestini3, E. Pippel4, N. Gauquelin5, J. Verbeeck5, K. Chen6, S. M. Valvidares7, H. Babu Vasili7, J. Herrero-Martin7, E. Pellegrin7, K. Nenkov2, A. Herklotz1, A. Ernst4, I. Mertig1,4, Z. Hu3, and K. Dörr1,2,†

  • 1Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
  • 2IFW Dresden, Institute for Metallic Materials, Postfach 270116, 01171 Dresden, Germany
  • 3Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany
  • 4Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
  • 5EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
  • 6Institute of Physics II, University of Cologne, Zülpicher Strasse 77, 50937 Cologne, Germany
  • 7ALBA Synchrotron Light Source, E-08290 Cerdanyola del Vallès, Barcelona, Spain

  • *sujitdask@gmail.com
  • kathrin.doerr@physik.uni-halle.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 2 — 1 January 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×