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1. Introduction

Recent advances in nanoscopic fabrication techniques
have made it possible to grow self-assembled InAs nano-
rings [1]. Today’s semiconductor nanorings can be viewed
as promising candidates for application in nanoelectron-
ics. Two of the most interesting properties of these
scattering-free quantum rings are their response to ex-
ternal magnetic fields and their multi-particle excitation
spectra. The additional non-simply connected geome-
try of nanorings is of great interest. The physics of the
flux sensitivity of an electron on the ring is its charge,
which couples to the vector potential. Correspondingly,
the coupling to the flux has opposite signs for the elec-
tron and the hole. For this reason, an exciton being a
bound state of the electron and the hole as a neutral en-
tity should not be sensitive to the flux. However due to
finite size of the exciton, such a sensitivity will emerge.
One of the manifestation of the Aharonov—Bohm effect
(ABE) in ring geometry is a periodicity of exciton energy
as a function of magnetic flux @ through the ring with
the period of oscillations $y = he/e. Magnetoexcitons in
quantum rings (QRs) and antidotes with parabolic dis-
persion are investigated in Ref. [2]. The energetics of
two oppositely charged particles in an AB ring interact-
ing through a contact potential was earlier investigated
in Ref. [3]| by using a Green function procedure.

The aim of this paper is to investigate the possibility
of the ABE manifestation for exciton energy spectrum in
nanorings with complicated (Kane’s) dispersion law.

2. Theory

It is well known that the one-dimensional nonrelativis-
tic Coulomb energy is infinite in its ground state [4] and
it is logarithmically deep in a strong magnetic field [5].
At the same time, the dispersion law in semiconductors,
which are widely used for fabrication of nanostructures, is

essentially nonparabolic and in the two-band approxima-
tion of Kane’s dispersion law (which is valid for InSb and
InAs) is similar to the relativistic one [6]. The account of
the nonparabolicity of the dispersion law strongly affects
the energy of impurity states in quantum well wires [7].
The aim of this work is to investigate analytically the en-
ergetics of an exciton in a QR with nonparabolic (Kane’s)
dispersion law in a perpendicular magnetic field in ABE
setting.

We consider two oppositely charged particles of equal
masses moving along a circular one-dimensional ring
of radius R, which is threaded by a magnetic flux .
The Wannier equation for particles interacting through

Coulomb interaction is
2
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where the symbol c refers to the electron, v — to the
hole.

It is well known that in narrow-gap A3B® semiconduc-
tors the Kane dispersion law is realized
ev(k) = —me? £ /m2ct + h2k2c2, (2)
where the conduction band bottom is taken at the origin;
the parameter ¢ = (g4/2m)'/2 2 10% m/s is proportional
to the matrix element of bands interaction and plays the
role of the light velocity cp; €4 is the forbidden band
width, m is the effective mass of the electron on the con-
duction band bottom.

The position of each particle on a ring is described by
angular variables ¢; and @s. In terms of center of mass
@. = (¢ + ¢2)/2 and relative p = ¢ — o variables, we

have
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In the more interesting case for the optical absorption,
when @, = 0, the energy of the 1D magnetoexciton in
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a QR is found from the Klein—Gordon equation for the
pair of the interacting particles with the equal effective
masses (in this case the half flux quantum @/2 = h/2ecy
corresponds to such pair):
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where the magnetic flux @ through the ring is connected
with the vector potential of the magnetic field by the
relation A = ¢/27R (A is a vector tangential to every
point of the ring); € is the dielectric constant. Following
the standard approach [2, 3] we initially set

Y(p)

¥(p) = exp(ife)x(p), ()
where f = &/ &y, so that x(¢) satisfies the equation
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To determine the allowed solutions of Eq. (6) we have
to take into account that the total wave function is
independently periodic in ¢; and o with period 2,
which coincides with the period of the Coulomb potential
U(yp) = €%/2Re|sin(¢/2)|. Because of the periodicity of
U(p) Eq. (6) has formally the Bloch-type solutions [2, 3|

X () = exp(igp)u(y), —% <q< % (7)

where u(¢) is periodic function of ¢ with the same period
27r. For a vanishing center of mass angular momentum
we find that

f+q:n17 7f7q:n27 (8)
where ny and ng are arbitrary integers, and

g=n/2—f, n=n; —na. (9)
In the view of the excitonic state, the potential should be
strong enough to bind the electron—hole pair, and then
the relative azimutal motion is strongly localized in each
potential well. The wave function in a small vicinity to
the point ¢ = 0 (as well as at ¢ =~ +2m, +47) satisfies
the equation
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Introducing the dimensionless variables
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where « is the analog of the fine structure constant, we

find
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Using the ansatz x(p) = Cp®f(p)exp(—p/2) we obtain
the following equation for f(p):

0?2 0 A
p5a s -(s-3) =0 (13)

where s12 = (1£+v1—a?)/2. Equation (13) has the
general solution

f(p) =CF <5 - 27257p>

A
+CyF (1 —s— 2 —2s, p) Pt (14)

where F'(a,b,z) is the confluent hypergeometric func-
tion [8], C1 and Cj are arbitrary constants. The in-
finite power series expansion will be terminated for
F(s—\/4,2s,p),if A = 4(n+s) and it will be terminated
for F(1—s—\/4,2—2s,p),if A = 4(n+1—s5). Let us note
that these two solutions are not linearly independent: the
first solution for the small values of s = 51 ~ a?/4 is
identical to the second for larger value of sy ~ 1 — a?/4.
Therefore we can, as in [9], take Cy = 0 and use the first
solution of x(p) with two values of s. Using the value
A =4(n+ s) we find the expression for the energy of the
“relativistic” exciton

2(n+s)
4n+s)?2+a2
Let us note that the electron—hole pair is localized now
at the distance equal to the effective Compton radius
aé, = aafy; with afy being the effective Bohr radius.

The normalization constant C' = C; for the region ¢ >
0 (as well as at p > £27,+47...); C = C; and C = -
for even and odd solutions respectively in the region ¢ <
0 (as well as at ¢ < £27, £47...).

In the tight-binding approximation any solution of the
type (7) corresponds to the energy [2, 10]

E, =c¢;4 (15)
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where the value of the index 6 = 0 describes the even
solution of the wave function and 6 = 1 describes the
odd solution.

3. Results and discussion

It is known that in the case of the Coulomb interaction
in nanoring with parabolic dispersion, there is no ground
excitonic state due to intrinsic divergence of the ground
state energy of 1D exciton [4]. Taking into account the
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realistic nonparabolic dispersion law given by Eq.(2) we
found that the ground state of 1D exciton exists in InSb
nanoring and we obtained the energy value Ey = 15.41R*
(R* is the effective Rydberg energy).

In order to access measurable ABE, the bound elec-
tron and hole should have a possibility to tunnel in the
opposite directions and meet each other on the opposite
side of the nanoring (¢ = 7). Because of the strong local-
ization of electron and hole at the distance equal to the
effective Compton radius ay; = aap we do not observe
AB oscillations for the ground state. We have already
found the AB oscillations in the energy of first excited
states (Fig. 1).
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Fig. 1. The oscillations of the exciton excited energy
levels in InSb nanoring with the radius R = 2ap as
a function of the magnetic flux with the fundamental
period he/e: (a) for first (second) even and odd excited
states with n =1, s = s2 (n =2, s = s1); (b) for third
(fourth) even and odd excited states with n =0, s = s2
(n=1, s =s1).

The energies and lengths are given in the units of ef-
fective Rydberg energy R* and Bohr radius af. For
our calculations we use material parameters of the InSh:
me =~ my, = 0.014my, ¢ = 16.8, ¢, = 0.17 ¢V [11];
for these parameters ¢ = 10® cm/s, R* = 0.68 meV,
af = 631 A, o =0.13 and ag, ~ 82 A. Figure 1 shows
the dependence of first four (even and odd) excited states
energies of 1D magnetoexciton in InSb nanoring on mag-
netic flux.

The dependence of the excited energies of 1D magne-
toexciton on the ring radius is given in Fig. 2 for vanish-
ing value of the flux. In the limiting case R — oo the

curves tend to the corresponding curves for 1D “relativis-
tic” exciton in InSb quantum wire.
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Fig. 2. The dependence of the excited energies of 1D

magnetoexciton in a InSb nanoring on the ring radius
for f =0.

The theory of trembling motion (Zitterbewegung ZB)
of charge carriers in various narrow-gap materials is re-
viewed in [12] and a similarity of ZB in such materials
is mentioned. The analogy between ABE manifestation
in single exciton spectrum in QRs of various narrow-
-gap materials such as InSh-type semiconductors, bilayer
graphene (with the gap induced by electric field) [13] etc.
is expected.
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