Skip to main content
Log in

Measurement of the size of embedded metal clusters by mass spectrometry, transmission electron microscopy, and small-angle X-ray scattering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ensembles of nanometer-sized Au, Co, Er, and FePt clusters were generated by a laser vaporization source and embedded in a MgO matrix grown on a mica substrate. The size distribution of the clusters was measured before sample preparation by time-of-flight mass spectrometry and afterwards by transmission electron microscopy. These well-characterized samples were used for investigations by small-angle X-ray scattering (SAXS). The scattering data was evaluated by Guinier analysis providing the average radii of the embedded clusters. The results are in good agreement with the cluster sizes obtained from the mass spectra as well as the dimensions determined from the transmission electron micrographs. Furthermore, other samples which were produced at an elevated substrate temperature of 500 °C exhibited an increased average cluster radius in the SAXS measurements. This behavior is attributed to diffusion and coalescence emerging at higher deposition temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.H. Meiwes-Broer (ed.), Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer Ser. Cluster Phys.) (Springer, Berlin, 2000)

  2. C. Binns, Surf. Sci. Rep. 44, 1 (2001)

    Article  Google Scholar 

  3. A. Perez, P. Melinon, V. Dupuis, P. Jensen, B. Prevel, J. Tuaillon, L. Bardotti, C. Martet, M. Treilleux, M. Broyer, M. Pellarin, J.L. Vaille, B. Palpant, J. Lermé, J. Phys. D Appl. Phys. 30, 709 (1997)

    Article  ADS  Google Scholar 

  4. U. Heiz, A. Sanchez, S. Abbet, W.D. Schneider, J. Am. Chem. Soc. 121, 3214 (1999)

    Article  Google Scholar 

  5. K. Koga, T. Ikeshoji, K. Sugawara, Phys. Rev. Lett. 92, 115507 (2004)

    Article  ADS  Google Scholar 

  6. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  7. J. Chatterjee, Y. Haik, C.J. Chen, J. Magn. Magn. Mater. 257, 113 (2003)

    Article  ADS  Google Scholar 

  8. V. Rotello (ed.), Nanoparticles: Building Blocks for Nanotechnology (Nanostructure Science & Technology) (Kluwer Academic/Plenum, New York, 2003)

    Google Scholar 

  9. S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Adv. Mater. 13, 1501 (2001)

    Article  Google Scholar 

  10. G.I. Frolov, Technol. Phys. 46, 1537 (2001)

    Google Scholar 

  11. K.C. Grabar, K.R. Brown, C.D. Keating, S.J. Stranick, Anal. Chem. 69, 471 (1997)

    Article  Google Scholar 

  12. M. Sugiyama, G. Sigesato, J. Electron Microsc. 53, 527 (2004)

    Article  Google Scholar 

  13. O. Glatter, O. Kratky, Small Angle X-ray Scattering (Academic, London, 1982)

    Google Scholar 

  14. M.J. Hostetler, J.E. Wingate, C.J. Zhong, J.E. Harris, R.W. Vachet, M.R. Clark, J.D. Londono, S.J. Green, J.J. Stokes, G.D. Wignall, G.L. Glish, M.D. Porter, N.D. Evans, R.W. Murray, Langmuir 14, 17 (1998)

    Article  Google Scholar 

  15. G. Kellermann, A.F. Craievich, Phys. Rev. B 70, 054106 (2004)

    Article  ADS  Google Scholar 

  16. J. Müller, P. Löthman, D.C. Meyer, Cryst. Res. Technol. 40, 177 (2005)

    Article  Google Scholar 

  17. C.S. Tsao, C.Y. Chen, Physica B 353, 217 (2004)

    Article  ADS  Google Scholar 

  18. R.E. Winans, S. Vajda, B. Lee, S.J. Riley, S. Seifert, G.Y. Tikhonov, N.A. Tomczyk, J. Phys. Chem. B 108, 18105 (2004)

    Article  Google Scholar 

  19. W. Bras, G.N. Greaves, M. Oversluizen, S.M. Clark, G. Eeckhaut, J. Non-Cryst. Solids 351, 2178 (2005)

    Article  Google Scholar 

  20. J.V. Pinto, R.C. da Silva, E. Alves, M.J. Soares, T. Monteiro, R. González, Nucl. Instrum. Methods B 218, 128 (2004)

    Article  ADS  Google Scholar 

  21. A.N. Dobrynin, D.N. Ievlev, G. Verschoren, J. Swerts, M.J. Van Bael, K. Temst, P. Lievens, E. Piscopiello, G. Van Tendeloo, S.Q. Zhou, A. Vantomme, Phys. Rev. B 73, 104421 (2006)

    Article  ADS  Google Scholar 

  22. S. Momose, H. Kodama, T. Uzumaki, A. Tanaka, Appl. Phys. Lett. 85, 1748 (2004)

    Article  ADS  Google Scholar 

  23. S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene, T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004)

    Article  ADS  Google Scholar 

  24. S. Yamamuro, K. Sumiyama, T. Kamiyama, K.J. Suzuki, J. Appl. Phys. 86, 5726 (1999)

    Article  ADS  Google Scholar 

  25. W. Bouwen, P. Thoen, F. Vanhoutte, S. Bouckaert, F. Despa, H. Weidele, R.E. Silverans, P. Lievens, Rev. Sci. Instrum. 71, 54 (2000)

    Article  ADS  Google Scholar 

  26. N. Vandamme, E. Janssens, F. Vanhoutte, P. Lievens, C. Van Hasendonck, J. Phys.: Condens. Matter 15, S2983 (2003)

    Article  ADS  Google Scholar 

  27. R.J. Kennedy, P.A. Stampe, J. Magn. Magn. Mater. 195, 284 (1999)

    Article  ADS  Google Scholar 

  28. W. Bras, I.P. Dolbnya, D. Detollenaere, R. van Tol, M. Malfois, G.N. Greaves, A.J. Ryan, E. Heeley, J. Appl. Cryst. 36, 791 (2003)

    Article  Google Scholar 

  29. A. Gebriel, Nucl. Instrum. Methods 201, 232 (1982)

    Google Scholar 

  30. T.C. Huang, H. Toraya, T.N. Blanton, Y. Wu, J. Appl. Cryst. 26, 180 (1993)

    Article  Google Scholar 

  31. J.M. Ramallo-Lopez, F.G. Requejo, A.F. Craievich, J. Wei, M. Avalos-Borja, E. Iglesia, J. Mol. Catal. A Chem. 228, 299 (2005)

    Article  Google Scholar 

  32. G. Rosenfeld, K. Morgenstern, M. Esser, G. Comsa, Appl. Phys. A 69, 489 (1999)

    Article  ADS  Google Scholar 

  33. M.J.J. Jak, C. Konstapel, A. van Kreuningen, J. Verhoeven, J.W.M. Frenken, Surf. Sci. 457, 295 (2000)

    Article  Google Scholar 

  34. C.E.J. Mitchell, A. Howard, M. Carney, R.G. Egdell, Surf. Sci. 490, 196 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lievens.

Additional information

PACS

61.10.Eq; 61.46.+w; 68.37.Lp; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrich, C., Favre, L., Ievlev, D. et al. Measurement of the size of embedded metal clusters by mass spectrometry, transmission electron microscopy, and small-angle X-ray scattering. Appl. Phys. A 86, 533–538 (2007). https://doi.org/10.1007/s00339-006-3808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3808-5

Keywords

Navigation