Skip to main content
Log in

Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous titanium dioxide is a material finding its use in a wide range of applications. For many of these, it is important to achieve a high degree of crystallinity in the material. It is generally accepted that the use of the soft templating approach to synthesize mesoporous titania, results in a compromise between crystallinity and specific surface area due to thermal instability of the used templates. In this paper, we explore how the use of microwave irradiation can influence the crystallinity, specific surface area, and the electronic properties of mesoporous titania. Therefore, we combined microwave radiation with an evaporation-induced self-assembly (EISA) synthesis. We show that additional microwave treatment at carefully chosen synthesis steps can enhance the crystallinity with 20 % without causing significant loss of surface area (>360 m2/g). Surface photovoltage measurements were used to investigate the electronic properties. The photocatalytic activity of the samples was evaluated in aqueous media by following the degradation of an industrial dye, methylene blue, and the herbicide isoproturon under UV irradiation and in gaseous media looking at the degradation of acetaldehyde, a common indoor pollutant under UVA irradiation. In all cases, the microwave treatment results in more active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Carp O, Huisman CL, Reller A (2004) Photoinduced Reactivity Of Titanium Dioxide. Prog Solid State Chem 32:33–177

    Article  Google Scholar 

  2. Varghese OK, Gong DW, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B 93:338–344

    Article  Google Scholar 

  3. Grzybowska B, Sloczyski J, Grabowski R, Samson K, Gressel I, Wcislo K, Gengembre L, Barbaux Y (2002) Effect of doping of TiO2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia-titania catalysts. Appl Catal A 230:1–10

    Article  Google Scholar 

  4. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12

    Article  Google Scholar 

  5. Arin M, Lommens P, Avci N, Hopkins SC, De Buysser K, Arabatzis IM, Fasaki I, Poelman D, Van Driessche I (2011) Inkjet printing of photocatalytically active TiO2 thin films from water based precursor solutions. J Eur Ceram Soc 31:1067–1074

    Article  Google Scholar 

  6. Christensen PA, Curtis TP, Egerton TA, Kosa SAM, Tinlin JR (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl Catal B 41:371–386

    Article  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238:37–38

    Article  Google Scholar 

  8. Zhan E, Li Y, Liu J, Huang X, Shen W (2009) A VOx/Meso-TiO2 catalyst for methanol oxidation to dimethoxymethane. Catal Commun 10:2051–2055

    Article  Google Scholar 

  9. Wang H, Miao JJ, Zhu JM, Ma HM, Zhu JJ, Chen HY (2004) Mesoporous spherical aggregates of anatase nanocrystals with wormhole-like framework structures: their chemical fabrication, characterization, and photocatalytic performance. Langmuir 20:11738–11747

    Article  Google Scholar 

  10. Perathoner S, Lanzafame P, Passalacqua R, Centi G, Schlogl R, Su DS (2006) Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Micropor Mesopor Mater 90:347–361

    Article  Google Scholar 

  11. Zhang Z, Zuo F, Feng P (2010) Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. J Mater Chem 20:2206–2212. doi:10.1039/B921157H

    Article  Google Scholar 

  12. Kim DS, Kwak S-Y (2007) The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl Catal A 323:110–118

    Article  Google Scholar 

  13. Dong W, Sun Y, Lee CW, Hua W, Lu X, Shi Y, Zhang S, Chen J, Zhao D (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129:13894–13904

    Article  Google Scholar 

  14. Kim DS, Han SJ, Kwak S-Y (2007) Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J Colloid Interface Sci 316:85–91

    Article  Google Scholar 

  15. Yu JC, Wang XC, Fu XZ (2004) Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chem Mater 16:1523–1530

    Article  Google Scholar 

  16. Choi SY, Mamak M, Coombs N, Chopra N, Ozin GA (2004) Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, Meso-Nc-TiO2: bulk and crack-free thin film morphologies. Adv Funct Mater 14:335–344

    Article  Google Scholar 

  17. Ismail AA, Bahnemann DW, Robben L, Yarovyi V, Wark M (2010) Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chem Mater 22:108–116

    Article  Google Scholar 

  18. Primo A, Corma A, Garcia H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  Google Scholar 

  19. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50:11312–11359

    Article  Google Scholar 

  20. Dufour F, Cassaignon S, Durupthy O, Colbeau-Justin C (2016) C Chaneac (2012) Do TiO2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven? Eur J Inorg Chem 16:2707–2715

    Google Scholar 

  21. Arin M, Lommens P, Hopkins SC, Pollefeyt G, Van der Eycken J, Ricart S, Granados X, Glowacki BA, Van Driessche I (2012) Deposition of photocatalytically active TiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis. Nanotechnology 23:165603

    Article  Google Scholar 

  22. Arin M, Watte J, Pollefeyt G, De Buysser K, Van Driessche I, Lommens P (2013) Low temperature deposition of TiO2 layers from nanoparticle containing suspensions synthesized by microwave hydrothermal treatment. J Sol-Gel Sci Technol 66:100–111

    Article  Google Scholar 

  23. Periyat P, Leyland N, McCormack DE, Colreavy J, Corr D, Pillai SC (2010) Rapid microwave synthesis of mesoporous TiO2 for electrochromic displays. J Mater Chem 20:3650–3655. doi:10.1039/B924341K

    Article  Google Scholar 

  24. Jena A, Vinu R, Shivashankar SA, Madras G (2010) Microwave assisted synthesis of nanostructured titanium dioxide with high photocatalytic activity. Ind Eng Chem Res 49:9636–9643

    Article  Google Scholar 

  25. Suprabha T, Roy HG, Thomas J, Kumar KP, Mathew S (2009) Microwave-assisted synthesis of titania nanocubes, nanospheres and nanorods for photocatalytic dye degradation. Nanoscale Res Lett 4:144–152

    Article  Google Scholar 

  26. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Micropor Mesopor Mater 125:170–223

    Article  Google Scholar 

  27. Tian BZ, Yang HF, Liu XY, Xie SH, Yu CZ, Fan J, Tu B, Zhao DY (2002) Fast Preparation Of Highly Ordered Nonsiliceous Mesoporous Materials Via Mixed Inorganic Precursors. Chem Commun 17:1824–1825

    Article  Google Scholar 

  28. Beyers E, Cool P, Vansant EF (2007) Stabilisation of mesoporous TiO2 by different bases influencing the photocatalytic activity. Micropor Mesopor Mater 99:112–117

    Article  Google Scholar 

  29. Bish DL, Howard SA (1988) Quantitative phase analysis using the rietveld method. J Appl Crystallogr 21:86–91

    Article  Google Scholar 

  30. AA Coelho (2007) Topas Academic version 4.1

  31. Verbruggen SW, Dirckx JJJ, Martens JA, Lenaerts S (2013) Surface photovoltage measurements: a quick assessment of the photocatalytic activity? Catal Today 209:215–220

    Article  Google Scholar 

  32. Deng S, Verbruggen SW, He Z, Cott DJ, Vereecken PM, Martens JA, Bals S, Lenaerts S, Detavernier C (2014) Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates. Rsc Advances 4:11648–11653

    Article  Google Scholar 

  33. Verbruggen SW, Lenaerts S, Denys S (2015) Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis. Chem Eng J 262:1–8

    Article  Google Scholar 

  34. Verbruggen SW, Deng S, Kurttepeli M, Cott DJ, Vereecken PM, Bals S, Martens JA, Detavernier C, Lenaerts S (2014) Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates. Appl Catal B 160:204–210

    Article  Google Scholar 

  35. Brinker CJ, Scherer GW (1990) Sol-Gel science: the physics and chemistry of sol-gel processing. Acad Press, San Diego

    Google Scholar 

Download references

Acknowledgements

M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. We want to thank T. Planckaert for the N2 sorption measurements, J. Watté for the XRD measurements, and professor K. De Buysser for the quantitative Rietveld refinements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Van Driessche.

Ethics declarations

Conflicts of interest

The authors declares that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meire, M., Verbruggen, S.W., Lenaerts, S. et al. Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity. J Mater Sci 51, 9822–9829 (2016). https://doi.org/10.1007/s10853-016-0215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0215-y

Keywords

Navigation