Skip to main content

Advertisement

Log in

Modeling and Experimental Study of Trichloroethylene Abatement with a Negative Direct Current Corona Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim HH (2004) Plasma Process Polym 1:91–110

    Article  Google Scholar 

  2. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333

    Article  Google Scholar 

  3. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  4. Parmar GR, Rao NN (2009) Crit Rev Environ Sci Tec 39:41–78

    Article  CAS  Google Scholar 

  5. Nunez CM, Ramsey GH, Ponder WH, Abbott JH, Hamel LE, Kariher PH (1993) Air Waste 43:242–247

    Article  CAS  Google Scholar 

  6. Urashima K, Chang JS (2000) IEEE Trans Dielec Electr Insul 7:602–614

    Article  CAS  Google Scholar 

  7. Müller S, Zahn RJ (2007) Contrib Plasma Phys 47:520–529

    Article  Google Scholar 

  8. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Adv Oxid Technol 14:165–173

    CAS  Google Scholar 

  9. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2012) J Adv Oxid Technol 15:232–241

    CAS  Google Scholar 

  10. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  11. Vandenbroucke AM, Dinh Nguyen MT, Giraudon JM, Morent R, De Geyter N, Lamonier JF, Leys C (2011) Plasma Chem Plasma Process 31:707–718

  12. Evans D, Rosocha LA, Anderson GK, Coogan JJ, Kushner MJ (1993) J Appl Phys 74:5378–5386

    Article  CAS  Google Scholar 

  13. Dorai R, Kushner MJ (1999) SAE/SP no. 1999-01-3683:81-88

  14. Aerts R, Martens T, Bogaerts A (2012) J Phys Chem C 116:23257–23273

    Article  CAS  Google Scholar 

  15. www.graphviz.org

  16. Van Gaens W, Bogaerts A (2013) J Phys D Appl Phys 46:275201

    Article  Google Scholar 

  17. Fridman A (ed) (2008) Plasma chemistry. Cambridge University Press, New York

    Google Scholar 

  18. Aerts R, Tu X, De Bie C, Whitehead JC, Bogaerts A (2012) Plasma Process Polym 9:994–1000

    Article  CAS  Google Scholar 

  19. Magureanu M, Mandache NB, Parvulescu VI (2007) Plasma Chem Plasma Process 27:679–690

    Article  CAS  Google Scholar 

  20. Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220

    Article  CAS  Google Scholar 

  21. Callebaut T, Kochetov I, Akishev Y, Napartovich A, Leys C (2004) Plasma Sources Sci Technol 13:245–250

    Article  Google Scholar 

  22. Futamura S, Zhang AH, Yamamoto T (1997) J Electrostat 42:51–62

    Article  CAS  Google Scholar 

  23. Futamura S, Einaga H, Zhang AH (2001) IEEE Trans Ind Appl 37:978–985

    Article  CAS  Google Scholar 

  24. Trushkin AN, Grushin ME, Kochetov IV, Trushkin NI, Akishev YS (2013) Plasma Phys Reports 39:167–182

    Article  CAS  Google Scholar 

  25. Gift JS, McGaughy R, Singh DV, Sonawane B (2008) Regul Toxic Pharmac 51:98–107

    Article  CAS  Google Scholar 

  26. McCulloch A (2003) Chemosphere 50:1291–1308

    Article  CAS  Google Scholar 

  27. Hakoda T, Hashimoto S, Fujiyama Y, Mizuno A (2000) J Phys Chem A 104:59–66

    Article  CAS  Google Scholar 

  28. Magureanu M, Mandache NB, Parvulescu VI, Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Appl Catal B Environ 74:270–277

    Article  CAS  Google Scholar 

  29. Morent R, Dewulf J, Steenhaut N, Leys C, Van Langenhove H (2006) J Adv Oxid Technol 9:53–58

    CAS  Google Scholar 

  30. Oda T, Takahashi T, Kohzuma S (2001) IEEE Trans Ind Appl 37:965–970

    Article  CAS  Google Scholar 

  31. Jiang C, Mohamed AH, Stark RH, Yuan JH, Schoenbach KH (2005) IEEE Trans Plasma Sci 33:1416–1425

  32. Nguyen Dinh MT, Giraudon JM, Lamonier JF, Vandenbroucke A, De Geyter N, Leys C, Morent R (2014) Appl Catal B Environ 147:904–911

  33. Vandenbroucke AM, Mora M, Jimenez-Sanchidrian C, Romero-Salguero FJ, De Geyter N, Leys C, Morent R (2014) Appl Catal B Environ 156:94–100

    Article  Google Scholar 

Download references

Acknowledgments

R. Morent acknowledges the support of the Research Foundation Flanders (FWO, Belgium) through a post-doctoral research fellowship. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 279022. We are also very grateful to M. Kushner and group members for providing the Global_kin code and the useful advice. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Finally, we acknowledge the financial support by an IOF-SBO project of the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne M. Vandenbroucke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandenbroucke, A.M., Aerts, R., Van Gaens, W. et al. Modeling and Experimental Study of Trichloroethylene Abatement with a Negative Direct Current Corona Discharge. Plasma Chem Plasma Process 35, 217–230 (2015). https://doi.org/10.1007/s11090-014-9584-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9584-7

Keywords

Navigation