Skip to main content
Log in

Modeling plasmas in analytical chemistry—an example of cross-fertilization

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper gives an overview of the modeling work developed in our group in the last 25 years for various plasmas used in analytical spectrochemistry, i.e., glow discharges (GDs), inductively coupled plasmas (ICPs), and laser ablation (LA) for sample introduction in the ICP and for laser-induced breakdown spectroscopy (LIBS). The modeling approaches are briefly presented, which are different for each case, and some characteristic results are illustrated. These plasmas are used not only in analytical chemistry but also in other applications, and the insights obtained in these other fields were quite helpful for us to develop models for the analytical plasmas. Likewise, there is now a huge interest in plasma–liquid interaction, atmospheric pressure glow discharges (APGDs), and dielectric barrier discharges (DBDs) for environmental, medical, and materials applications of plasmas. The insights obtained in these fields are also very relevant for ambient desorption/ionization sources and for liquid sampling, which are nowadays very popular in analytical chemistry, and they could be very helpful in developing models for these sources as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Montaser A. Inductively coupled plasma mass spectrometry. New York: Wiley; 1992.

    Google Scholar 

  2. Montaser A. Inductively coupled plasma mass spectrometry. New York: Wiley; 1998.

    Google Scholar 

  3. Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal Chem. 1980;52:2283–9.

    CAS  Google Scholar 

  4. Russo RE. Laser ablation. Appl Spectrosc. 1995;49:14A–28A.

    CAS  Google Scholar 

  5. Günther D, Jackson SE, Longerich HP. Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochim Acta Part B. 1999;54:381–409.

    Google Scholar 

  6. Russo RE, Mao X, Mao SS. The physics of laser ablation in microchemical analysis. Anal Chem. 2002;74:70A–7A.

    CAS  PubMed  Google Scholar 

  7. Hattendorf B, Latkoczy C, Günther D. Laser ablation inductively coupled plasma mass spectrometry - it’s the aerosol size that really matters in this high-throughput technique for ultratrace analysis of solids. Anal Chem. 2003;75:341A–7A.

    PubMed  Google Scholar 

  8. Radziemski LJ. From LASER to LIBS, the path of technology development. Spectrochim. Acta Part B. 2002;57:1109–13.

    Google Scholar 

  9. Cristoforetti G, De Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V, et al. Views and criticism: local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim Acta Part B. 2010;65:86–95.

    Google Scholar 

  10. De Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, De Pascale O. Nanoparticle enhanced laser induced breakdown spectroscopy: effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim Acta B. 2014;98:19–27.

    Google Scholar 

  11. Harrison WW, Hess KR, Marcus RK, King FL. Glow discharge mass spectrometry. Anal Chem. 1986;58:341A–56A.

    CAS  Google Scholar 

  12. Hang W, Walden WO, Harrison WW. Microsecond pulsed glow discharge as an analytical spectroscopic source. Anal Chem. 1996;68:1148–52.

    CAS  PubMed  Google Scholar 

  13. Lobo L, Tuccitto N, Bordel N, Pereiro R, Pisonero J, Licciardello A, et al. Polymer screening by radiofrequency glow discharge time-of-flight mass spectrometry. Anal Bioanal Chem. 2010;396:2863–9.

    CAS  PubMed  Google Scholar 

  14. Bengtson A. A contribution to the soIution of the problem of quantification in surface analysis work using glow discharge atomic emission spectroscopy. Spectrochim Acta Part B. 1985;40:631–9.

    Google Scholar 

  15. Smoluch M, Mielczarek P, Silberring J. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. Mass Spectrom Rev. 2016;35:22–34.

    CAS  PubMed  Google Scholar 

  16. Badal SP, Michalak SD, Chan GC-Y, You Y, Shelley JT. Tunable ionization modes of a flowing atmospheric-pressure afterglow (FAPA) ambient ionization source. Anal Chem. 2016;88:3494–503.

    CAS  PubMed  Google Scholar 

  17. Andrade FJ, Shelley T, Wetzel WC, Webb MR, Gamez G, Ray SJ, et al. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal Chem. 2008;80:2646–53.

    CAS  PubMed  Google Scholar 

  18. Shelley JT, Hieftje GM. Ionization matrix effects in plasma-based ambient mass spectrometry sources. J Anal Atom Spectrom. 2010;25:345–50.

    CAS  Google Scholar 

  19. Schwartz AJ, Shelley JT, Walton CL, Williams KL, Hieftje GM. Atmospheric-pressure ionization and fragmentation of peptides by solution-cathode glow discharge. Chem Sci. 2016;7:6440–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Decker CG, Webb MR. Measurement of sample and plasma properties in solution-cathode glow discharge and effects of organic additives on these properties. J Anal Atom Spectrom. 2016;31:311–8.

    CAS  Google Scholar 

  21. Hoegg ED, Barinaga CJ, Hager GJ, Hart GL, Koppenaal DW, Marcus RK. Preliminary figures of merit for isotope ratio measurements: the liquid sampling-atmospheric pressure glow discharge microplasma ionization source coupled to an Orbitrap mass analyzer. J Amer Soc Mass Spectrom. 2016;27:1393–403.

    CAS  Google Scholar 

  22. Bogaerts A, van Straaten M, Gijbels R. Monte Carlo simulation of an analytical glow discharge: motion of electrons, ions and fast neutrals in the cathode dark space. Spectrochim Acta Part B. 1995;50:179–96.

    Google Scholar 

  23. Bogaerts A, Gijbels R, Goedheer WJ. Hybrid Monte Carlo-fluid model of a direct current glow discharge. J Appl Phys. 1995;78:2233–41.

    CAS  Google Scholar 

  24. Bogaerts A, Gijbels R. The role of fast argon ions and atoms in the ionization of argon in a direct current glow discharge: a mathematical simulation. J Appl Phys. 1995;78:6427–31.

    CAS  Google Scholar 

  25. Bogaerts A, Gijbels R, Goedheer WJ. Two-dimensional model of a direct current glow discharge: description of the electrons, argon ions and fast argon atoms. Anal Chem. 1996;68:2296–303.

    CAS  Google Scholar 

  26. Passchier JDP, Goedheer WJ. Relaxation phenomena after laser-induced photodetachment in electronegative rf discharges. J Appl Phys. 1993;73:1073–9.

    CAS  Google Scholar 

  27. Boeuf JP. Numerical model of rf glow discharges. Phys. Rev. 1987;A36:2782–92.

    Google Scholar 

  28. Graves DB, Jensen KF. A continuum model of DC and RF discharges. IEEE trans. Plasma Sci. 1986;14:78–91.

    Google Scholar 

  29. Meyyappan M, Kreskovsky JP. Glow discharge simulation through solutions to the moments of the Boltzmann transport equation. J Appl Phys. 1990;68:1506–12.

    Google Scholar 

  30. Bradley JW. A fluid model of the edge plasma in low-temperature discharges containing beam electrons. J Phys D Appl Phys. 1996;29:706–15.

    CAS  Google Scholar 

  31. Carman RJ, Maitland A. A simulation of electron motion in the cathode sheath region of a glow discharge in helium. J Phys D Appl Phys. 1987;20:1021–30.

    CAS  Google Scholar 

  32. Carman RJ. A simulation of electron motion in the cathode sheath region of a glow discharge in argon. J Phys D Appl Phys. 1989;22:55–66.

    CAS  Google Scholar 

  33. An TN, Marode E, Johnson PC. Monte Carlo simulation of electrons within the cathode fall of a glow discharge in helium. J Phys D Appl Phys. 1977;10:2317–28.

    Google Scholar 

  34. Weng Y, Kushner M. Method for including electron-electron collisions in Monte Carlo simulations of electron swarms in partially ionized gases. Phys Rev A. 1990;42:6192–200.

    CAS  PubMed  Google Scholar 

  35. Donko Z, Rozsa K, Tobin RC. Monte Carlo analysis of the electrons' motion in a segmented hollow cathode discharge. J Phys D Appl Phys. 1996;29:105–14.

    CAS  Google Scholar 

  36. Helin W, Zuli L, Daming L, Boming Y. Electron energy and angular distribution of electrons in a helium DC glow discharge cathode sheath with transverse magnetic fields. Vacuum. 1996;47:167–72.

    Google Scholar 

  37. Surendra M, Graves DB, Jellum GM. Self-consistent model of a direct-current glow discharge: treatment of fast electrons. Phys Rev A. 1990;41:1112–25.

    CAS  PubMed  Google Scholar 

  38. Sommerer TJ, Kushner MJ. Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model. J Appl Phys. 1992;71:1654–73.

    CAS  Google Scholar 

  39. Huang FY, Kushner MJ. A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport. J Appl Phys. 1995;78:5909–18.

    CAS  Google Scholar 

  40. Alves LL. Fluid modelling of the positive column of direct-current glow discharges. Plasma Sources Sci Technol. 2007;16:557–69.

    Google Scholar 

  41. Salabas A, Gousset G, Alves LL. Two-dimensional fluid modelling of charged particle transport in radio-frequency capacitively coupled discharges. Plasma Sources Sci Technol. 2002;11:448–65.

    CAS  Google Scholar 

  42. Alves LL, Gousset G, Vallée S. Nonequilibrium positive column revisited. IEEE Trans. Plasma Sci. 2003;31:572–86.

    CAS  Google Scholar 

  43. Bogaerts A, van Straaten M, Gijbels R. Description of the thermalization process of the sputtered atoms in a glow discharge, using a three-dimensional Monte Carlo method. J Appl Phys. 1995;77:1868–74.

    Google Scholar 

  44. Bogaerts A, Gijbels R. Role of sputtered Cu atoms and ions in a direct current glow discharge: combined fluid and Monte Carlo model. J Appl Phys. 1996;79:1279–86.

    CAS  Google Scholar 

  45. Bogaerts A, Gijbels R. Modeling of metastable argon atoms in a direct current glow discharge. Phys Rev A. 1995;52:3743–51.

    CAS  PubMed  Google Scholar 

  46. Bogaerts A, Gijbels R. Two-dimensional model of a direct current glow discharge: description of the argon metastable atoms, sputtered atoms and ions. Anal Chem. 1996;68:2676–85.

    CAS  PubMed  Google Scholar 

  47. Bogaerts A, Gijbels R, Vlcek J. Collisional-radiative model for an argon glow discharge. J Appl Phys. 1998;84:121–36.

    CAS  Google Scholar 

  48. Bogaerts A, Gijbels R, Carman RJ. Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge. Spectrochim Acta Part B. 1998;53:1679–703.

    Google Scholar 

  49. Vlcek J. A collisional-radiative model applicable to argon discharges over a wide range of conditions. I. Formulation and basic data. J Phys D Appl Phys. 1989;22:623–31.

    CAS  Google Scholar 

  50. Carman RJ, Brown DJW, Piper JA. A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser. IEEE J Quant Electron. 1994;30:1876–95.

    CAS  Google Scholar 

  51. Bogaerts A, Gijbels R. Modeling of glow discharges: what can we learn from it? Anal Chem. 1997;69:A719–27.

    Google Scholar 

  52. Bogaerts A, Gijbels R. Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: a mathematical simulation. Spectrochim Acta Part B. 1998;53:437–62.

    Google Scholar 

  53. Bogaerts A, Wagner E, Smith BW, Winefordner JD, Pollmann D, Harrison WW, et al. Three-dimensional density profiles of sputtered atoms and ions in a direct current glow discharge: experimental study and comparison with calculations. Spectrochim Acta Part B. 1997;52:205–18.

    Google Scholar 

  54. Bogaerts A, Guenard RD, Smith BW, Winefordner JD, Harrison WW, Gijbels R. Three-dimensional density profiles of the argon metastable atoms in a direct current glow discharge: experimental study and comparison with calculations. Spectrochim Acta Part B. 1997;52:219–29.

    Google Scholar 

  55. Bogaerts A, Gijbels R. Calculation of crater profiles on a flat cathode in a direct current glow discharge, and comparison with experiment. Spectrochim Acta Part B. 1997;52:765–78.

    Google Scholar 

  56. Bogaerts A, Verscharen W, Steers E. Computer simulations of crater profiles in GD-OES: comparison with experiments and investigation of the underlying mechanisms. Spectrochim Acta Part B. 2004;59:1403–11.

    Google Scholar 

  57. Bogaerts A, Gijbels R, Vlcek J. Modeling of glow discharge optical emission spectrometry: calculation of the argon atomic optical emission spectrum. Spectrochim Acta Part B. 1998;53:1517–26.

    Google Scholar 

  58. Bogaerts A, Gijbels R. Argon and copper optical emission spectra in a Grimm glow discharge source: mathematical simulations and comparison with experiment. J Anal Atom Spectrom. 1998;13:721–6.

    CAS  Google Scholar 

  59. Bogaerts A, Donko Z, Kutasi K, Bano G, Pinhao N, Pinheiro M. Comparison of calculated and measured optical emission intensities in a direct current argon-copper glow discharges. Spectrochim Acta Part B. 2000;55:1465–79.

    Google Scholar 

  60. Bogaerts A. Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges. J Anal Atom Spectrom. 2007;22:13–40.

    CAS  Google Scholar 

  61. Bogaerts A, Wilken L, Hoffmann V, Gijbels R, Wetzig K. Comparison of modeling calculations with experimental results for direct current glow discharge optical emission spectrometry. Spectrochim Acta Part B. 2001;56:551–64.

    Google Scholar 

  62. Gamez G, Bogaerts A, Andrade F, Hieftje GM. Fundamental studies on a planar-cathode direct current glow discharge: part I. Characterization via laser scattering techniques. Spectrochim Acta Part B. 2004;59:435–47.

    Google Scholar 

  63. Bogaerts A, Gijbels R, Gamez G, Hieftje GM. Fundamental studies on a planar-cathode direct current glow discharge: part II. Numerical modeling and comparison with laser scattering experiments. Spectrochim Acta Part B. 2004;49:449–60.

    Google Scholar 

  64. Bogaerts A, Gijbels R, Goedheer WJ. Comparison between a radio-frequency and direct current glow discharge in argon by a hybrid Monte Carlo - fluid model for electrons, argon ions and fast argon atoms. Spectrochim Acta Part B. 1999;54:1335–50.

    Google Scholar 

  65. Bogaerts A, Gijbels R. Description of the argon excited levels in a radio-frequency and direct current glow discharge. Spectrochim Acta Part B. 2000;55:263–78.

    Google Scholar 

  66. Bogaerts A, Gijbels R. Behavior of the sputtered copper atoms, ions and excited species in a radio-frequency and direct current glow discharge. Spectrochim Acta Part B. 2000;55:279–97.

    Google Scholar 

  67. Bogaerts A, Gijbels R. Similarities and differences between direct current and radio-frequency glow discharges: a mathematical simulation. J Anal Atom Spectrom. 2000;15:1191–201.

    CAS  Google Scholar 

  68. Bogaerts A, Gijbels R, Goedheer W. Improved hybrid Monte Carlo - fluid model for the electrical characteristics in an analytical radio-frequency glow discharge in argon. J Anal Atom Spectrom. 2001;16:750–5.

    CAS  Google Scholar 

  69. Bogaerts A, Wilken L, Hoffmann V, Gijbels R, Wetzig K. Comparison of modeling calculations with experimental results for rf glow discharge optical emission spectrometry. Spectrochim Acta Part B. 2002;57:109–19.

    Google Scholar 

  70. Bogaerts A, Gijbels R. Hybrid Monte Carlo - fluid model for a microsecond pulsed glow discharge. J Anal Atom Spectrom. 2000;15:895–905.

    CAS  Google Scholar 

  71. Bogaerts A, Gijbels R. Modeling of a microsecond pulsed glow discharge: behavior of the argon excited levels and of the sputtered copper atoms and ions. J Anal Atom Spectrom. 2001;16:239–49.

    CAS  Google Scholar 

  72. Bogaerts A, Gijbels R, Jackson GP. Modeling of a millisecond pulsed glow discharge: investigation of the afterpeak. J Anal Atom Spectrom. 2003;18:533–48.

    CAS  Google Scholar 

  73. Bogaerts A. The afterglow mystery of pulsed glow discharges and the role of dissociative electron-ion recombination. J Anal Atom Spectrom. 2007;22:502–12.

    CAS  Google Scholar 

  74. Bogaerts A, Gijbels R, Serikov VV. Calculation of gas heating in direct current argon glow discharges. J Appl Phys. 2000;87:8334–44.

    CAS  Google Scholar 

  75. Bogaerts A, Okhrimovskyy A, Gijbels R. Calculation of the gas flow and its effect on the plasma characteristics for a modified Grimm-type glow discharge cell. J Anal Atom Spectrom. 2002;17:1076–82.

    CAS  Google Scholar 

  76. Bogaerts A, Gijbels R. Calculation of cathode heating in analytical glow discharges. J Anal Atom Spectrom. 2004;18:1206–12.

    Google Scholar 

  77. Bogaerts A, Gijbels R. Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations. J Anal Atom Spectrom. 2000;15:441–9.

    CAS  Google Scholar 

  78. Bogaerts A, Gijbels R. Hybrid Monte Carlo - fluid modeling network for an argon/hydrogen direct current glow discharge. Spectrochim Acta Part B. 2002;57:1071–99.

    Google Scholar 

  79. Bogaerts A. Hydrogen addition to an argon glow discharge: a numerical simulation. J Anal Atom Spectrom. 2002;17:768–79.

    CAS  Google Scholar 

  80. Bogaerts A. Computer simulations of argon – hydrogen Grimm-type glow discharges. J Anal Atom Spectrom. 2008;23:1441–556.

    Google Scholar 

  81. Bogaerts A. Hybrid Monte Carlo - fluid model for studying the effects of nitrogen addition to argon glow discharges. Spectrochim Acta Part B. 2009;64:126–40.

    Google Scholar 

  82. Bogaerts A. Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo - fluid modeling investigation. Spectrochim Acta Part B. 2009;64:1266–79.

    Google Scholar 

  83. Bogaerts A, Gijbels R. Relative sensitivity factors in glow discharge mass spectrometry: the role of charge transfer ionization. J Anal Atom Spectrom. 1996;11:841–7.

    CAS  Google Scholar 

  84. Bogaerts A, Temelkov KA, Vuchkov NK, Gijbels R. Calculation of rate constants for asymmetric charge transfer, and their effect on relative sensitivity factors in glow discharge mass spectrometry. Spectrochim Acta Part B. 2007;62:325–36.

    Google Scholar 

  85. Lindner H, Bogaerts A. Multi-element model for the simulation of inductively coupled plasmas: effects of helium addition to the central gas stream. Spectrochim Acta Part B. 2001;66:421–31.

    Google Scholar 

  86. Lindner H, Murtazin A, Groh S, Niemax K, Bogaerts A. Simulation and experimental studies on plasma temperature, flow velocity and injector diameter effects for an inductively coupled plasma. Anal Chem. 2011;83:9260–6.

    CAS  PubMed  Google Scholar 

  87. Aghaei M, Lindner H, Bogaerts A. Effect of a mass spectrometer interface on inductively coupled plasma characteristics: a computational study. J Anal Atom Spectrom. 2012;27:604–10.

    CAS  Google Scholar 

  88. Aghaei M, Lindner H, Bogaerts A. Optimization of operating parameters for inductively coupled plasma mass spectrometry: a computational study. Spectrochim Acta Part B. 2012;76:56–64.

    CAS  Google Scholar 

  89. Aghaei M, Lindner H, Bogaerts A. Effect of sampling cone position and diameter on the gas flow dynamics in an ICP. J Anal Atom Spectrom. 2013;28:1485–92.

    CAS  Google Scholar 

  90. Aghaei M, Flamigni L, Lindner H, Gunther D, Bogaerts A. Occurrence of gas flow rotational motion inside the ICP torch: a computational and experimental study. J Anal Atom Spectrom. 2014;29:249–61.

    CAS  Google Scholar 

  91. Aghaei M, Bogaerts A. Particle transport through an inductively coupled plasma torch: elemental droplet evaporation. J Anal Atom Spectrom. 2016;31:545–822.

    Google Scholar 

  92. Aghaei M, Lindner H, Bogaerts A. Ion clouds in the ICP torch: a closer look through computations. Anal Chem. 2016;88:8005–2018.

    CAS  PubMed  Google Scholar 

  93. Bogaerts A, Aghaei M. Inductively coupled plasma – mass spectrometry: insights through computer modeling. J Anal Atom Spectrom. 2017;32:233–61.

    CAS  Google Scholar 

  94. Boulos MI. Heating of powders in the fire ball of an induction plasma. IEEE Trans Plasma Sci. 1978;6:91–106.

    Google Scholar 

  95. Mostaghimi J, Pfender E. Effects of metallic vapor on the properties of an argon arc plasma. Plasma Chem Plasma Process. 1984;4:199–217.

    CAS  Google Scholar 

  96. Mostaghimi J, Proulx P, Boulos MI, Barnes RM. Computer modeling of the emission patterns for a spectrochemical ICP. Spectrochim Acta Part B. 1985;40:153–66.

    Google Scholar 

  97. Zhao GY, Mostaghimi J, Boulos MI. The induction plasma chemical reactor: part I. Equilibrium model. Plasma Chem Plasma Process. 1990;10:133–50.

    CAS  Google Scholar 

  98. Zhao GY, Mostaghimi J, Boulos MI. The induction plasma chemical reactor: part II. Kinetic model. Plasma Chem Plasma Process. 1990;10:151–66.

    CAS  Google Scholar 

  99. Colombo V, Ghedini E, Sanibondi P. Three-dimensional investigation of particle treatment in an rf thermal plasma with reaction chamber. Plasma Sources Sci Technol. 2010;19:065024–36.

    Google Scholar 

  100. Colombo V, Ghedini E, Sanibondi P. Two-temperature thermodynamic and transport properties of argon-hydrogen and nitrogen-hydrogen plasmas. J Phys D Appl Phys. 2009;42:055213–24.

    Google Scholar 

  101. Colombo V, Ghedini E, Mostaghimi J. Three-dimensional modeling of an inductively coupled plasma torch for spectroscopic analysis. IEEE Trans Plasma Sci. 2008;36:1040–1.

    CAS  Google Scholar 

  102. Shigeta M. Three-dimensional flow dynamics of an argon rf plasma with dc jet assistance: a numerical study. J Phys D Appl Phys. 2013;46:015401–13.

    Google Scholar 

  103. Shigeta M. Time-dependent 3D simulation of an argon rf inductively coupled thermal plasma. Plasma Sources Sci Technol. 2012;21:055029–43.

    Google Scholar 

  104. Shigeta M, Watanabe T. Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas. J Appl Phys. 2008;103:074903–18.

    Google Scholar 

  105. Bogaerts A, Chen Z, Gijbels R, Vertes A. Laser ablation for analytical sampling: what can we learn from modeling? Spectrochim Acta Part B. 2003;58:1867–93.

    Google Scholar 

  106. Chen Z, Bogaerts A. Laser ablation of cu and plume expansion into 1 atm ambient gas. J Appl Phys. 2005;97:063305.

    Google Scholar 

  107. Bogaerts A, Chen Z. Nanosecond laser ablation of cu: modeling of the expansion in He background gas, and comparison with the expansion in vacuum. J Anal Atom Spectrom. 2004;18:1169–76.

    Google Scholar 

  108. Bleiner D, Bogaerts A. Computer simulations of laser ablation sample introduction for plasma-source elemental microanalysis. J Anal Atom Spectrom. 2006;21:1161–74.

    CAS  Google Scholar 

  109. Bleiner D, Bogaerts A. Computer simulations of sample chambers for laser ablation - inductively coupled plasma mass spectrometry. Spectrochim Acta Part B. 2007;62:155–68.

    Google Scholar 

  110. Autrique D, Bogaerts A, Lindner H, Garcia CC, Niemax K. Design analysis of a laser ablation cell for inductively coupled plasma mass spectrometry by numerical simulation. Spectrochim Acta Part B. 2008;63:257–70.

    Google Scholar 

  111. Lindner H, Autrique D, Garcia CC, Niemax K, Bogaerts A. Optimized transport setup for high repetition rate pulse-separated analysis in laser ablation inductively coupled plasma mass spectrometry. Anal Chem. 2009;81:4241–8.

    CAS  PubMed  Google Scholar 

  112. Lindner H, Autrique D, Pisonero J, Günther D, Bogaerts A. Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry. J Anal Atom Spectrom. 2010;25:295–304.

    CAS  Google Scholar 

  113. Ready JF. Effects of high power laser radiation. New York: Academic Press; 1971.

    Google Scholar 

  114. Bogaerts A, Chen Z. Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modelling investigation. Spectrochim Acta Part B. 2005;60:1280–307.

    Google Scholar 

  115. Bogaerts A, Chen Z, Bleiner D. Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments. J Anal Atom Spectrom. 2006;21:384–95.

    CAS  Google Scholar 

  116. Chen Z, Bleiner D, Bogaerts A. Effect of ambient pressure on laser ablation and plume expansion dynamics: a numerical simulation. J Appl Phys. 2006;99:063304.

    Google Scholar 

  117. Bleiner D, Chen Z, Autrique D, Bogaerts A. Role of laser-induced melting and vaporization of metals during ICP-MS and LIBS analysis, investigated by computer simulations and experiments. J Anal Atom Spectrom. 2006;21:910–21.

    CAS  Google Scholar 

  118. Bogaerts A, Chen Z, Autrique D. Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation. Spectrochim Acta Part B. 2008;63:746–54.

    Google Scholar 

  119. Martens T, Bogaerts A, Brok W, van Dijk J. Computer simulations of a dielectric barrier discharge used for analytical spectrometry. Anal Bioanal Chem. 2007;388:1583–94.

    CAS  PubMed  Google Scholar 

  120. Martens T, Bogaerts A, Brok WJM, van der Mullen JJAM. Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma. J. Anal. Atom. Spectrom. 2007;22:1033–42.

    CAS  Google Scholar 

  121. Martens T, Mihailova D, van Dijk J, Bogaerts A. Theoretical characterization of an atmospheric pressure glow discharge used for analytical spectrometry. Anal Chem. 2009;81:9096–108.

    CAS  PubMed  Google Scholar 

  122. Andrade FJ, Wetzel WC, Chan GC-Y, Webb MR, Gamez G, Ray SJ, et al. A new, versatile, direct-current helium atmospheric-pressure glow discharge. J Anal Atom Spectrom. 2006;21:1175–84.

    CAS  Google Scholar 

  123. Ellis WC, Spencer RL, Reininger C, Farnsworth PB. Computational model of a direct current glow discharge used as an ambient desorption/ionization source for mass spectrometry. J Anal Atom Spectrom. 2017;32:2407–15.

    CAS  Google Scholar 

  124. Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process. 2003;23:1–46.

    CAS  Google Scholar 

  125. Bogaerts A, Neyts E, Gijbels R, van der Mullen JJAM. Gas discharge plasmas and their applications. Spectrochim Acta Part B. 2002;57:609–58.

    Google Scholar 

  126. Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys. 1987;20:1421–37.

    CAS  Google Scholar 

  127. Golubovskii Yu B, Maiorov VA, Behnke JF. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. J Phys D Appl Phys. 2002;35:751–61.

    Google Scholar 

  128. Choi YH, Kim JH, Hwang YS. One-dimensional discharge simulation of nitrogen DBD atmospheric pressure plasma. Thin Solid Films. 2006;506-507:389–95.

    CAS  Google Scholar 

  129. Petrovic D, Martens T, van Dijk J, Brok WJM, Bogaerts A. Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry. J Phys D Appl Phys. 2009;42:205206.

    Google Scholar 

  130. Lin K-M, Hu M-H, Hung C-T, Wu J-S, Hwang F-N, Chen Y-S, et al. A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet. Comput Phys Commun. 2012;183:2550–60.

    CAS  Google Scholar 

  131. Duan X, He F, Ouyang J. Uniformity of a dielectric barrier glow discharge: experiments and two-dimensional modeling. Plasma Sources Sci Technol. 2012;21:015008.

    Google Scholar 

  132. Van Laer K, Bogaerts A. Fluid modeling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Sci Technol. 2016;25:015002.

    Google Scholar 

  133. Kruszelnicki J, Engeling KW, Foster JE, Xiong Z, Kushner MJ. Propagation of negative electric discharges through 2-dimensional packed bed reactors. J Phys D Appl Phys. 2017;50:025203.

    Google Scholar 

  134. Baliab N, Aggelopoulosa CA, Skourasa ED, Tsakiroglou CD, Burganos VN. Modeling of a DBD plasma reactor for porous soil remediation. Chem Eng J. 2019;373:393–405.

    Google Scholar 

  135. Saridj A, Belarbi AW. Numerical modeling of a DBD in glow mode at atmospheric pressure. J Theor Appl Phys. 2019;13:179–90.

    Google Scholar 

  136. Trenchev G, Nikiforov A, Wang W, Kolev S, Bogaerts A. Atmospheric pressure glow discharge for CO2 conversion: model-based exploration of the optimum reactor configuration. Chem Eng J. 2019;362:830–41.

    CAS  Google Scholar 

  137. Waskoenig J, Niemi K, Knake N, Graham LM, Reuter S, Schulz-von der Gathen V, et al. Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci Technol. 2010;19:045018.

    Google Scholar 

  138. Murakami T, Niemi K, Gans T, O’Connell D, Graham WG. Afterglow chemistry of atmospheric-pressure helium–oxygen plasmas with humid air impurity. Plasma Sources Sci Technol. 2014;23:025005.

    Google Scholar 

  139. Sakiyama Y, Graves DB. Finite element analysis of an atmospheric pressure RF-excited plasma needle. J Phys D Appl Phys. 2006;39:3451–6.

    CAS  Google Scholar 

  140. Van Gaens W, Bogaerts A. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D Appl Phys. 2013;46:275201.

    Google Scholar 

  141. Schmidt-Bleker A, Winter J, Iseni S, Dünnbier M, Weltmann KD, Reuter S. Reactive species output of a plasma jet with a shielding gas device - combination of FTIR absorption spectroscopy and gas phase modelling. J Phys D Appl Phys. 2014;47:145201.

    Google Scholar 

  142. Lietz AM, Kushner MJ. Molecular admixtures and impurities in atmospheric pressure plasma jets. J Appl Phys. 2018;124:153303.

    Google Scholar 

  143. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, et al. Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol. 2016;25:053002.

    Google Scholar 

  144. Vanraes P, Bogaerts A. Plasma physics of liquids - a focused review. Appl Phys Rev. 2018;5:031103.

    Google Scholar 

  145. Babaeva NY, Tian W, Kushner MJ. The interaction between plasma filaments in dielectric barrier discharges and liquid covered wounds: electric fields delivered to model platelets and cells. J Phys D Appl Phys. 2014;47:235201.

    Google Scholar 

  146. Chen C, Liu DX, Liu ZC, Yang AJ, Chen HL, Shama G, et al. A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chem Plasma Process. 2014;34:403–41.

    CAS  Google Scholar 

  147. Tian W, Lietz AM, Kushner MJ. The consequences of air flow on the distribution of aqueous species during dielectric barrier discharge treatment of thin water layers. Plasma Sources Sci Technol. 2016;25:055020.

    Google Scholar 

  148. Tian W, Kushner MJ. Long-term effects of multiply pulsed dielectric barrier discharges in air on thin water layers over tissue: stationary and random streamers. J Phys D Appl Phys. 2015;48:494002.

    Google Scholar 

  149. Tian W, Kushner MJ. Influence of excitation pulse duration of dielectric barrier discharges on biomedical applications. J Phys D Appl Phys. 2014;47:165201.

    Google Scholar 

  150. Lietz AM, Kushner MJ. Air plasma treatment of liquid covered tissue: long timescale chemistry. J Phys D Appl Phys. 2016;49:425204.

    Google Scholar 

  151. Lindsay A, Anderson C, Slikboer E, Shannon S, Graves D. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets. J Phys D Appl Phys. 2015;48:424007.

    Google Scholar 

  152. Norberg SA, Parsey GM, Lietz AM, Johnsen E, Kushner MJ. Atmospheric pressure plasma jets onto a reactive water layer over tissue: pulse repetition rate as a control mechanism. J Phys D Appl Phys. 2019;52:015201.

    Google Scholar 

  153. Verlackt CCW, Van Boxem W, Bogaerts A. Transport and accumulation of plasma generated species in aqueous solution. Phys Chem Chem Phys. 2018;20:6845–59.

    CAS  PubMed  Google Scholar 

  154. Heirman P, Van Boxem W, Bogaerts A. Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study. Phys Chem Chem Phys. 2019;21:12881–94.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. Aghaei, Z. Chen, D. Autrique, T. Martens, and P. Heirman are gratefully acknowledged for their valuable efforts in the model developments illustrated in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemie Bogaerts.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogaerts, A. Modeling plasmas in analytical chemistry—an example of cross-fertilization. Anal Bioanal Chem 412, 6059–6083 (2020). https://doi.org/10.1007/s00216-020-02587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02587-8

Keywords

Navigation