Skip to main content
Log in

Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source

  • Communication
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tao F, Catalysis Series No R S C. 17, Metal Nanoparticles for Catalysis: Advances and Applications. Cambridge: Royal Society of Chemistry, 2014

    Book  Google Scholar 

  2. Brault P. Review of low pressure plasma processing of proton exchange membrane fuel cell electrocatalysts. Plasma Processes and Polymers, 2016, 13: 10–18

    Article  CAS  Google Scholar 

  3. Wegner K, Piseri P, Vahedi Tafreshi H, Milani P. Cluster beam deposition: A tool for nanoscale science and technology. Journal of Physics. D, Applied Physics, 2006, 39: R439–R459

    Article  CAS  Google Scholar 

  4. Marek A, Valter J, Kadlec S, Vyskoèil J. Gas aggregation nanocluster source—reactive sputter deposition of copper and titanium nanoclusters. Surface and Coatings Technology, 2011, 205: S573–S576

    Article  CAS  Google Scholar 

  5. Ayesh A I. Production of metal-oxide nanoclusters using inert-gas condensation technique. Thin Solid Films, 2017, 636: 207–213

    Article  CAS  Google Scholar 

  6. Caillard A, Cuynet S, Lecas T, Andreazza P, Mikikian M, Thomann A L, Brault P. PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes. Journal of Physics. D, Applied Physics, 2015, 48: 475302

    Article  CAS  Google Scholar 

  7. Kylián O, Valeš V, Polonskyi O, Pešička J, Čechvala J, Solař P, Choukourov A, Slavínská D, Biederman H. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Materials Letters, 2012, 79: 229–231

    Article  CAS  Google Scholar 

  8. Watanabe Y, Wu X, Hirata H, Isomura N. Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catalysis Science & Technology, 2011, 1: 1490–1495

    Article  CAS  Google Scholar 

  9. Quesnel E, Pauliac-Vaujour E, Muffato V. Modeling metallic nanoparticle synthesis in a magnetron-based nanocluster source by gas condensation of a sputtered vapor. Journal of Applied Physics, 2010, 107: 054309

    Article  CAS  Google Scholar 

  10. Ayesh A I, Thaker S, Qamhieh N, Ghamlouche H. Size-controlled Pd nanocluster grown by plasma gas-condensation method. Journal of Nanoparticle Research, 2011, 13: 1125–1131

    Article  CAS  Google Scholar 

  11. Drabik M, Choukourov A, Artemenko A, Polonskyi O, Kylian O, Kousal J, Nichtova L, Cimrova V, Slavinska D, Biederman H. Structure and composition of titanium nanocluster films prepared by a gas aggregation cluster source. Journal of Physical Chemistry C, 2011, 115: 20937–20944

    Article  CAS  Google Scholar 

  12. Gojdka B, Hrkac V, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F. Study of cobalt clusters with very narrow size distribution deposited by high-rate cluster source. Nanotechnology, 2011, 22: 465704

    Article  CAS  PubMed  Google Scholar 

  13. Bouchat V, Feron O, Gallez B, Masereel B, Michiels C, Vander Borght T, Lucas S. Carbon nanoparticles synthesized by sputtering and gas condensation inside a nanocluster source of fixed dimension. Surface and Coatings Technology, 2011, 205: S577–S581

    Article  CAS  Google Scholar 

  14. Ten Brink G H, Krishnan G, Kooi B J, Palasantzas G. Copper nanoparticle formation in a reducing gas environment. Journal of Applied Physics, 2014, 116: 104302

    Article  CAS  Google Scholar 

  15. Koch S A, Palasantzas G, Vystavel T, De Hosson J Th M, Binns C, Louch S. Magnetic and structural properties of Co nanocluster thin films. Physical Review. B, 2005, 71: 085410

    Article  CAS  Google Scholar 

  16. Spadaro M C, D’Addato S, Gasperi G, Benedetti F, Lueches P, Grillo V, Bertoni G, Valeri S. Morphology, structural properties and reducibility of size-selected CeO2 − l nanoparticle films. Beilstein Journal of Nanotechnology, 2015, 6: 60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Addato S, Spadar M C, Luches P, Grillo V, Frabboni S, Valeri S, Ferretti A M, Capetti E, Ponti A. Controlled growth of Ni/NiO core-shell nanoparticles: Structure, morphology and tuning of magnetic properties. Applied Surface Science, 2014, 306: 2–6

    Article  CAS  Google Scholar 

  18. Polonskyi O, Ahadi A M, Tilo P, Fujioka K, Abraham J W, Vasiliauskaite E, Hinz A, Strunskus T, Wolf S, Bonitz M, et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. European Physical Journal D, 2018, 72: 93

    Article  CAS  Google Scholar 

  19. Brault P, Neyts E. Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering. Catalysis Today, 2015, 256: 3–12

    Article  CAS  Google Scholar 

  20. Neyts P, Brault P. Molecular dynamics simulations for plasma surface interactions. Plasma Processes and Polymers, 2017, 14: 1600145

    Article  CAS  Google Scholar 

  21. Liang T, Shin Y K, Cheng Y T, Yilmaz D E, Vishnu K G, Verners O, Zou C, Phillpot S R, Sinnott S B, van Duin A C T. Reactive Potentials for advanced atomistic simulations. Annual Review of Materials Research, 2013, 43: 109–129

    Article  CAS  Google Scholar 

  22. Hu W, Li G X, Chen J J, Huang F J, Wu Y, Yuan S D, Zhong L, Chen Y Q. Enhanced catalytic performance of a PdO catalyst prepared via a two-step method of in situ reduction-oxidation. Chemical Communications (Cambridge), 2017, 53: 6160–6163

    Article  CAS  Google Scholar 

  23. Huang F, Chen J, Hu W, Li G, Wu Y, Yuan S, Zhong L, Chen Y. Pd or PdO: Catalytic active site of methane oxidation operated close to stoichiometric air-to-fuel for natural gas vehicles. Applied Catalysis B: Environmental, 2017, 219: 73–81

    Article  CAS  Google Scholar 

  24. Liang X, Liu C J, Kuai P. Selective oxidation of glucose to gluconic acid over argon plasma reduced Pd/Al2O3. Green Chemistry, 2008, 10: 1318–1322

    Article  CAS  Google Scholar 

  25. Simões M, Baranton S, Coutanceau C. Electrochemical valorization of glycerol. ChemSusChem, 2012, 5: 2106–2124

    Article  CAS  PubMed  Google Scholar 

  26. Zalineeva A, Padilla M, Martinez U, Serov A, Artyushkova K, Baranton S, Coutanceau C, Atanassov P B. Self-supported Pd-Bi catalysts for the electrooxidation of glycerol in alkaline media. Journal of the American Chemical Society, 2014, 136: 3937–3945

    Article  CAS  PubMed  Google Scholar 

  27. Song S,Wang K, Yan L, Brouzgouc A, Zhang Y,Wang Y, Tsiakaras P. Ceria promoted Pd/C catalysts for glucose electrooxidation in alkaline media. Applied Catalysis B: Environmental, 2015, 176-177: 233–239

    Article  CAS  Google Scholar 

  28. Senftle T P, Meyer R J, Janik M J, van Duin A C T. Development of a ReaxFF potential for Pd/O and application to palladium oxide formation. Journal of Chemical Physics, 2013, 139: 044109

    Article  CAS  PubMed  Google Scholar 

  29. Graves D, Brault P. Molecular dynamics for low temperature plasma-surface interaction studies. Journal of Physics. D, Applied Physics, 2009, 42: 194011

    Article  CAS  Google Scholar 

  30. Brault P. Multiscale molecular dynamics simulation of plasma processing: Application to plasma sputtering. Frontiers in Physics, 2018, 6: 59

    Article  Google Scholar 

  31. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117: 1–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work has been funded by French “Agence Nationale de la Recherche” under grant ANR-16-CE29-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Brault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brault, P., Chamorro-Coral, W., Chuon, S. et al. Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source. Front. Chem. Sci. Eng. 13, 324–329 (2019). https://doi.org/10.1007/s11705-019-1792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1792-5

Keywords

Navigation